Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mater Des ; 192: 108742, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394995

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.

2.
Langmuir ; 34(7): 2531-2542, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29356546

RESUMO

The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.

4.
Langmuir ; 30(10): 2810-9, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24564353

RESUMO

Catanionic vesicles were prepared by mixing nonstoichiometric amounts of sodium bis(2-ethylhexyl) sulfosuccinate and dioctyldimethylammonium bromide in water. Depending on the concentration and mole ratios between the surfactants, catanionic vesicular aggregates are formed. They have either negative or positive charges in excess and are endowed with significant thermodynamic and kinetic stability. Vesicle characterization was performed by dynamic light scattering and electrophoretic mobility. It was inferred that vesicle size scales in inverse proportion with its surface charge density and diverges as the latter quantity approaches zero and/or the mole ratio equals unity. Therefore, both variables are controlled by the anionic/cationic mole ratio. Small-angle X-ray scattering, in addition, indicates that vesicles are unilamellar. Selected anionic vesicular systems were reacted with poly-L-lysine hydrobromide or lysozyme. Polymer binding continues until complete neutralization of the negatively charged sites on the vesicles surface is attained, as inferred by electrophoretic mobility. Lipoplexes are formed as a result of significant electrostatic interactions between cationic polyelectrolytes and negatively charged vesicles.


Assuntos
Proteínas/química , Tensoativos/química , Lipossomas Unilamelares/química , Dodecilsulfato de Sódio/química
5.
Soft Matter ; 10(48): 9657-67, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25356774

RESUMO

The phase behavior of an ad hoc synthesized surfactant, sodium 8-hexadecylsulfate (8-SHS), and its mixtures with didecyldimethylammonium bromide (DiDAB) in water is reported. We dealt with dilute concentration regimes, at a total surfactant content of <30 mmol kg(-1) where vesicular aggregates may be formed. The high synergistic behavior of such catanionic mixtures is concomitant with strongly negative interaction parameters, ß (≈-18 kBT), significant gain in the free energy of association, ΔGagg, and much lower association concentration compared to the pure surfactants. Vesicle size and ζ-potential depend on the mixture composition. Hydrodynamic diameters increase by progressive addition of oppositely charged surfactants to the one in excess. Counter-intuitively, the ζ-potential becomes more negative at DiDAB molar fractions close to 0.2. The same holds in the reverse case, the ζ-potential becomes more positive after small additions of 8-SHS; anyhow, the effect is more significant in anionic-rich mixtures. This phenomenon was explained by assuming a significant release of counterions and an asymmetric distribution of the two surfactants in the inner and outer vesicle leaflets. The equimolar mixtures form a cubic phase rather than the expected lamellar one. The effect of NaBr concentration on the stability of catanionic vesicles was also investigated. At high NaBr concentrations, all systems are destabilized. For DiDAB-rich vesicles, flocculation is observed, while for 8-SHS-rich ones, lamellar domains are formed at the bottom of the samples. The role played by NaBr depends on whether it is added before or after mixing the surfactants. In particular, preformed catanionic vesicles show a great kinetic stability towards addition of NaBr compared to those obtained by other procedures.

6.
Methods Mol Biol ; 2748: 73-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070108

RESUMO

Piezoelectric stimulation can have a significant impact on different cellular functions with possible applications in several fields, such as regenerative medicine, cancer therapy, and immunoregulation. For example, piezoelectric stimulation has been shown to modulate cytoskeleton variations: the implications of this effect range from the regulation of migration and invasion of cancer cells to the activation of pro- or anti-inflammatory phenotypes in immune cells. In this chapter, we will present different methodologies to evaluate cytoskeleton variations, focusing on modifications on f-/g-actin ratio and on the migration and invasion ability of tumor cells.


Assuntos
Actinas , Citoesqueleto , Movimento Celular , Citoesqueleto de Actina , Sistema Imunitário
7.
Artigo em Inglês | MEDLINE | ID: mdl-38739319

RESUMO

Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB. Herein, a lipid-based magnetic nanocarrier prepared by a low-energy method is first described. Magnetic nanocapsules with a hydrodynamic diameter of 256.7 ± 8.5 nm (polydispersity index: 0.089 ± 0.034) and a ξ-potential of -30.4 ± 0.3 mV were obtained. Transmission electron microscopy-energy dispersive X-ray spectroscopy analysis revealed efficient encapsulation of iron oxide nanoparticles within the oily core of the nanocapsules. Both thermogravimetric analysis and phenanthroline-based colorimetric assay showed that the iron oxide percentage in the final formulation was 12 wt.%, in agreement with vibrating sample magnetometry analysis, as the specific saturation magnetization of the magnetic nanocapsules was 12% that of the bare iron oxide nanoparticles. Magnetic nanocapsules were non-toxic in the range of 50-300 µg/mL over 72 h against both the human cerebral endothelial hCMEC/D3 and Human Brain Vascular Pericytes cell lines. Interestingly, higher uptake of magnetic nanocapsules in both cell types was evidenced in the presence of an external magnetic field than in the absence of it after 24 h. This increase in nanocapsules uptake was also evidenced in pericytes after only 3 h. Altogether, these results highlight the potential for magnetic targeting to the BBB of our formulation.

8.
Adv Healthc Mater ; : e2304331, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509761

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.

9.
ACS Nano ; 17(18): 18441-18455, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698887

RESUMO

Glioblastoma multiforme (GBM) is a devastating tumor of the central nervous system, currently missing an effective treatment. The therapeutic gold standard consists of surgical resection followed by chemotherapy (usually with temozolomide, TMZ) and/or radiotherapy. TMZ does not, however, provide significant survival benefit after completion of treatment because of development of chemoresistance and of heavy side effects of systemic administration. Improvement of conventional treatments and complementary therapies are urgently needed to increase patient survival and quality of life. Stimuli-responsive lipid-based drug delivery systems offer promising prospects to overcome the limitations of the current treatments. In this work, multifunctional lipid-based magnetic nanovectors functionalized with the peptide angiopep-2 and loaded with TMZ (Ang-TMZ-LMNVs) were tested to enhance specific GBM therapy on an in vivo model. Exposure to alternating magnetic fields (AMFs) enabled magnetic hyperthermia to be performed, that works in synergy with the chemotherapeutic agent. Studies on orthotopic human U-87 MG-Luc2 tumors in nude mice have shown that Ang-TMZ-LMNVs can accumulate and remain in the tumor after local administration without crossing over into healthy tissue, effectively suppressing tumor invasion and proliferation and significantly prolonging the median survival time when combined with the AMF stimulation. This powerful synergistic approach has proven to be a robust and versatile nanoplatform for an effective GBM treatment.


Assuntos
Glioblastoma , Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Camundongos Nus , Qualidade de Vida , Temozolomida/farmacologia , Lipídeos
10.
Adv Healthc Mater ; 12(19): e2203120, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058273

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Humanos , Glioblastoma/patologia , Hipertermia Induzida/métodos , Resultado do Tratamento , Fenômenos Magnéticos , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
11.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312240

RESUMO

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Nanopartículas/química , Membrana Celular , Campos Magnéticos , Neoplasias da Próstata/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química
12.
Mater Today Bio ; 13: 100196, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005600

RESUMO

Angiogenesis plays a fundamental role in tumor development, as it is crucial for tumor progression, metastasis development, and invasion. In this view, anti-angiogenic therapy has received considerable attention in several cancer types in order to inhibit tumor vascularization, and the progress of nanotechnology offers opportunities to target and release anti-angiogenic agents in specific diseased areas. In this work, we showed that the angiogenic behavior of human cerebral microvascular endothelial cells can be inhibited by using nutlin-3a-loaded ApoE-functionalized polymeric piezoelectric nanoparticles, which can remotely respond to ultrasound stimulation. The anti-angiogenic effect, derived from the use of chemotherapy and chronic piezoelectric stimulation, leads to disruption of tubular vessel formation, decreased cell migration and invasion, and inhibition of angiogenic growth factors in the presence of migratory cues released by the tumor cells. Overall, the proposed use of remotely activated piezoelectric nanoparticles could provide a promising approach to hinder tumor-induced angiogenesis.

13.
Biomater Sci ; 10(9): 2103-2121, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35316317

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted attention in the biomedical field thanks to their ability to prompt hyperthermia in response to an alternated magnetic field. Hyperthermia is well known for inducing cell death, in particular in tumour cells, which seem to have a higher sensitivity to temperature increases. For this reason, hyperthermia has been recommended as a therapeutic tool against cancer. Despite the potentialities of this approach, little is still known about the effects provoked by magnetic hyperthermia at the molecular level, and about the particular cell death mechanisms that are activated. Nevertheless, in-depth knowledge of this aspect would allow improvement of therapeutic outcomes and favour clinical translation. Moreover, in the last few decades, a lot of effort has been put into finding an effective delivery strategy that could improve SPION biodistribution and localisation at the action site. The aim of this review is to provide a general outline of magnetic hyperthermia, focusing on iron oxide nanoparticles and their interactions with magnetic fields, as well as on new strategies to efficiently deliver them to the target site, and on recent in vitro and in vivo studies proposing possible cell death pathways activated by the treatment. We will also cover their current clinical status, and discuss the contributions of omics in understanding molecular interactions between iron oxide nanoparticles and the biological environment.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Nanopartículas de Magnetita/uso terapêutico , Distribuição Tecidual
14.
ACS Appl Mater Interfaces ; 14(14): 15927-15941, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352893

RESUMO

Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).


Assuntos
Nanopartículas , Taninos , Antioxidantes/química , Ferro/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Taninos/farmacologia
15.
Nanoscale ; 14(36): 13292-13307, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36063033

RESUMO

Upon coming into contact with the biological environment, nanostructures are immediately covered by biomolecules, particularly by proteins forming the so-called "protein corona" (PC). The phenomenon of PC formation has gained great attention in recent years due to its implication in the use of nanostructures in biomedicine. In fact, it has been shown that the formation of the PC can impact the performance of nanostructures by reducing their stability, causing aggregation, increasing their toxicity, and providing unexpected and undesired nanostructure-cell interactions. In this work, we decided to study for the first time the formation and the evolution of PC on the surface of nanostructured lipid carriers loaded with superparamagnetic iron oxide nanoparticles, before and after the crossing of an in vitro model of the blood-brain barrier (BBB). Combining confocal microscopy, direct STochastic Optical Reconstruction Microscopy (dSTORM), and proteomic analysis, we were able to carry out a complete analysis of the PC formation and evolution. In particular, we highlighted that PC formation is a fast process, being formed around particles even after just 1 min of exposure to fetal bovine serum. Moreover, PC formed around particles is extremely heterogeneous: while some particles have no associated PC at all, others are completely covered by proteins. Lastly, the interaction with an in vitro BBB model strongly affects the PC composition: in particular, a large amount of the proteins forming the initial PC is lost after the BBB passage and they are partially replaced by new proteins derived from both the brain endothelial cells and the cell culture medium. Altogether, the obtained data could potentially provide new insights into the design and fabrication of lipid nanostructures for the treatment of central nervous system disorders.


Assuntos
Nanopartículas , Nanoestruturas , Coroa de Proteína , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lipídeos , Espectrometria de Massas , Microscopia Confocal , Nanopartículas/química , Coroa de Proteína/química , Proteômica , Soroalbumina Bovina/metabolismo
16.
Acta Biomater ; 139: 218-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33894347

RESUMO

Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, represents the most aggressive primary brain tumor. The complex genetic heterogeneity, the acquired drug resistance, and the presence of the blood-brain barrier (BBB) limit the efficacy of the current therapies, with effectiveness demonstrated only in a small subset of patients. To overcome these issues, here we propose an anticancer approach based on ultrasound-responsive drug-loaded organic piezoelectric nanoparticles. This anticancer nanoplatform consists of nutlin-3a-loaded ApoE-functionalized P(VDF-TrFE) nanoparticles, that can be remotely activated with ultrasound-based mechanical stimulations to induce drug release and to locally deliver anticancer electric cues. The combination of chemotherapy treatment with chronic piezoelectric stimulation resulted in activation of cell apoptosis and anti-proliferation pathways, induction of cell necrosis, inhibition of cancer migration, and reduction of cell invasiveness in drug-resistant GBM cells. Obtained results pave the way for the use of innovative multifunctional nanomaterials in less invasive and more focused anticancer treatments, able to reduce drug resistance in GBM. STATEMENT OF SIGNIFICANCE: Piezoelectric hybrid lipid-polymeric nanoparticles, efficiently encapsulating a non-genotoxic drug (nutlin-3a) and functionalized with a peptide (ApoE) that enhances their passage through the BBB, are proposed. Upon ultrasound stimulation, nanovectors resulted able to reduce cell migration, actin polymerization, and invasion ability of glioma cells, while fostering apoptotic and necrotic events. This wireless activation of anticancer action paves the way to a less invasive, more focused and efficient therapeutic strategy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Apoptose , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos
17.
Macromol Biosci ; 21(9): e2100181, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212510

RESUMO

Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.


Assuntos
Fotoquimioterapia , Porfirinas , Clorofila/química , Clorofila/farmacologia , Nanomedicina , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química
18.
Adv Healthc Mater ; 9(3): e1901589, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854132

RESUMO

Many central nervous system (CNS) diseases are still incurable and only symptomatic treatments are available. Oxidative stress is suggested to be a common hallmark, being able to cause and exacerbate the neuronal cell dysfunctions at the basis of these pathologies, such as mitochondrial impairments, accumulation of misfolded proteins, cell membrane damages, and apoptosis induction. Several antioxidant compounds are tested as potential countermeasures for CNS disorders, but their efficacy is often hindered by the loss of antioxidant properties due to enzymatic degradation, low bioavailability, poor water solubility, and insufficient blood-brain barrier crossing efficiency. To overcome the limitations of antioxidant molecules, exploitation of nanostructures, either for their delivery or with inherent antioxidant properties, is proposed. In this review, after a brief discussion concerning the role of the blood-brain barrier in the CNS and the involvement of oxidative stress in some neurodegenerative diseases, the most interesting research concerning the use of nano-antioxidants is introduced and discussed, focusing on the synthesis procedures, functionalization strategies, in vitro and in vivo tests, and on recent clinical trials.


Assuntos
Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/etiologia , Nanoestruturas/administração & dosagem , Animais , Antioxidantes/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanoestruturas/química , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
19.
Adv Mater Technol ; 5(10): 2000540, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088902

RESUMO

The modeling of the pathological microenvironment of the central nervous system (CNS) represents a disrupting approach for drug screening for advanced therapies against tumors and neuronal disorders. The in vitro investigations of the crossing and diffusion of drugs through the blood-brain barrier (BBB) are still not completely reliable, due to technological limits in the replication of 3D microstructures that can faithfully mimic the in vivo scenario. Here, an innovative 1:1 scale 3D-printed realistic biohybrid model of the brain tumor microenvironment, with both luminal and parenchyma compartments, is presented. The dynamically controllable microfluidic device, fabricated through two-photon lithography, enables the triple co-culture of hCMEC/D3 cells, forming the internal biohybrid endothelium of the capillaries, of astrocytes, and of magnetically-driven spheroids of U87 glioblastoma cells. Tumor spheroids are obtained from culturing glioblas-toma cells inside 3D microcages loaded with superparamagnetic iron oxide nanoparticles (SPIONs). The system proves to be capable in hindering dextran diffusion through the bioinspired BBB, while allowing chemotherapy-loaded nanocarriers to cross it. The proper formation of the selective barrier and the good performance of the anti-tumor treatment demonstrate that the proposed device can be successfully exploited as a realistic in vitro model for high-throughput drug screening in CNS diseases.

20.
ACS Appl Mater Interfaces ; 12(26): 29037-29055, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459082

RESUMO

Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Lisossomos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Compostos Férricos/química , Humanos , Imidazóis/química , Nanopartículas/química , Peptídeos/química , Piperazinas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa