Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38124445

RESUMO

The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.


Assuntos
Genoma Mitocondrial , Genômica , Animais , Filogenia , Mitocôndrias/genética , DNA Mitocondrial/genética , Mamíferos/genética , Análise de Sequência de DNA , Núcleo Celular/genética , Evolução Molecular
2.
Biodivers Data J ; 12: e109848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348182

RESUMO

White-nose disease (WND), caused by the psychrophilic fungus Pseudogymnoascusdestructans, represents one of the greatest threats for North American hibernating bats. Research on molecular data has significantly advanced our knowledge of various aspects of the disease, yet more studies are needed regarding patterns of P.destructans genetic diversity distribution. In the present study, we investigate three sites within the native range of the fungus in detail: two natural hibernacula (karst caves) in Bulgaria, south-eastern Europe and one artificial hibernaculum (disused cellar) in Germany, northern Europe, where we conducted intensive surveys between 2014 and 2019. Using 18 microsatellite and two mating type markers, we describe how P.destructans genetic diversity is distributed between and within sites, the latter including differentiation across years and seasons of sampling; across sampling locations within the site; and between bats and hibernaculum walls. We found significant genetic differentiation between hibernacula, but we could not detect any significant differentiation within hibernacula, based on the variables examined. This indicates that most of the pathogen's movement occurs within sites. Genotypic richness of P.destructans varied between sites within the same order of magnitude, being approximately two times higher in the natural caves (Bulgaria) compared to the disused cellar (Germany). Within all sites, the pathogen's genotypic richness was higher in samples collected from hibernaculum walls than in samples collected from bats, which corresponds with the hypothesis that hibernacula walls represent the environmental reservoir of the fungus. Multiple pathogen genotypes were commonly isolated from a single bat (i.e. from the same swab sample) in all study sites, which might be important to consider when studying disease progression.

3.
Cell Genom ; 4(2): 100482, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237599

RESUMO

The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization. To resolve the coevolution of genome architecture and their unusual antiviral tolerance, we undertook a phylogenomic analysis of 60 Old World Myotis genomes. We demonstrate an extensive history of introgressive hybridization that has replaced the species phylogeny across 17%-93% of the genome except for pericentromeric regions of macrochromosomes. Introgression tracts were enriched on microchromosome regions containing key antiviral pathway genes overexpressed during viral challenge experiments. Together, these results suggest that the unusual Myotis karyotype may have evolved to selectively position immune-related genes in high recombining genomic regions prone to introgression of divergent alleles, including a diversity of interleukin loci responsible for the release of pro-inflammatory cytokines.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Genoma , Genômica , Cariótipo , Antivirais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa