Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Physiol Plant ; 174(2): e13679, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362106

RESUMO

Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.


Assuntos
Micorrizas , Rizosfera , Bactérias/metabolismo , Metaboloma , Micorrizas/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Microbiologia do Solo , Zea mays/metabolismo
2.
Food Microbiol ; 99: 103820, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119105

RESUMO

Sub-Saharan region is often characterized by food and nutrition insecurity especially "hidden hunger" which results from inadequate micronutrients in diets. African indigenous leafy vegetables (AILVs) can represent a valid food source of micronutrients, but they often go to waste resulting in post-harvest losses. In an attempt to prolong AILVs shelf-life while enhancing their nutritional quality, fermentation was studied from a microbiological and nutritional point of view. Pumpkin leaves (Cucurbita sp.) were spontaneously fermented using the submerged method with 3% NaCl and 3% sucrose. Controls were set up, consisting of leaves with no additions. During fermentation, samples of both treatments were taken at 0, 24, 48, 72 and 168 h to monitor pH and characterize the microbial population through culture-based and molecular-based analyses. Variations between fresh and treated leaves in B-group vitamins, carotenoids, polyphenols, and phytic acid were evaluated. Data revealed that the treatment with addition of NaCl and sucrose hindered the growth of undesired microorganisms; in controls, unwanted microorganisms dominated the bacterial community until 168 h, while in treated samples Lactobacillaceae predominated. Furthermore, the content in folate, ß-carotene and lutein increased in treated leaves compared to the fresh ones, while phytic acid diminished indicating an amelioration in the nutritional value of the final product. Thus, fermentation could help in preserving Cucurbita sp. leaves, avoiding contamination of spoilage microorganisms and enhancing the nutritional values.


Assuntos
Cucurbita/química , Alimentos Fermentados/análise , Folhas de Planta/química , Verduras/química , Carotenoides/análise , Carotenoides/metabolismo , Cucurbita/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Segurança Alimentar , Lactobacillaceae/metabolismo , Valor Nutritivo , Folhas de Planta/microbiologia , Verduras/microbiologia , Vitaminas/análise , Vitaminas/metabolismo
3.
Biodegradation ; 29(2): 187-209, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29492776

RESUMO

Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.


Assuntos
Poluição Ambiental/análise , Consórcios Microbianos , Petróleo/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Análise por Conglomerados , Genes Bacterianos , Consórcios Microbianos/genética , Análise Multivariada , Poluição por Petróleo/análise , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Especificidade da Espécie
4.
Food Microbiol ; 55: 73-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26742618

RESUMO

Toxigenic species belonging to Bacillus cereus sensu lato, including Bacillus thuringiensis, cause foodborne outbreaks thanks to their capacity to survive as spores and to grow in food matrixes. The goal of this work was to assess by means of a genome-wide transcriptional assay, in the food isolate B. thuringiensis UC10070, the gene expression behind the process of spore germination and consequent outgrowth in a vegetable-based food model. Scanning electron microscopy and Energy Dispersive X-ray microanalysis were applied to select the key steps of B. thuringiensis UC10070 cell cycle to be analyzed with DNA-microarrays. At only 40 min from heat activation, germination started rapidly and in less than two hours spores transformed in active growing cells. A total of 1646 genes were found to be differentially expressed and modulated during the entire B. cereus life cycle in the food model, with most of the significant genes belonging to transport, transcriptional regulation and protein synthesis, cell wall and motility and DNA repair groups. Gene expression studies revealed that toxin-coding genes nheC, cytK and hblC were found to be expressed in vegetative cells growing in the food model.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Esporos Bacterianos/crescimento & desenvolvimento , Verduras/microbiologia , Bacillus thuringiensis/crescimento & desenvolvimento , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Modelos Biológicos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
5.
Food Microbiol ; 52: 106-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26338123

RESUMO

The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei.


Assuntos
Bactérias/isolamento & purificação , Queijo/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Queijo/análise , Fermentação , Microbiologia de Alimentos , Dados de Sequência Molecular , Filogenia
6.
Food Microbiol ; 46: 342-356, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475305

RESUMO

The bacterial diversity involved in food fermentations is one of the most important factors shaping the final characteristics of traditional foods. Knowledge about this diversity can be greatly improved by the application of high-throughput sequencing technologies (HTS) coupled to the PCR amplification of the 16S rRNA subunit. Here we investigated the bacterial diversity in batches of Salame Piacentino PDO (Protected Designation of Origin), a dry fermented sausage that is typical of a regional area of Northern Italy. Salami samples from 6 different local factories were analysed at 0, 21, 49 and 63 days of ripening; raw meat at time 0 and casing samples at 21 days of ripening where also analysed, and the effect of starter addition was included in the experimental set-up. Culture-based microbiological analyses and PCR-DGGE were carried out in order to be compared with HTS results. A total of 722,196 high quality sequences were obtained after trimming, paired-reads assembly and quality screening of raw reads obtained by Illumina MiSeq sequencing of the two bacterial 16S hypervariable regions V3 and V4; manual curation of 16S database allowed a correct taxonomical classification at the species for 99.5% of these reads. Results confirmed the presence of main bacterial species involved in the fermentation of salami as assessed by PCR-DGGE, but with a greater extent of resolution and quantitative assessments that are not possible by the mere analyses of gel banding patterns. Thirty-two different Staphylococcus and 33 Lactobacillus species where identified in the salami from different producers, while the whole data set obtained accounted for 13 main families and 98 rare ones, 23 of which were present in at least 10% of the investigated samples, with casings being the major sources of the observed diversity. Multivariate analyses also showed that batches from 6 local producers tend to cluster altogether after 21 days of ripening, thus indicating that HTS has the potential for fine scale differentiation of local fermented foods.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Produtos da Carne/microbiologia , RNA Ribossômico 16S/genética , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Fermentação , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Produtos da Carne/análise , Dados de Sequência Molecular , Filogenia , Suínos
7.
Sci Total Environ ; 945: 174001, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879040

RESUMO

Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.


Assuntos
Lactuca , Metaboloma , Microplásticos , Raízes de Plantas , Rizosfera , Poluentes do Solo , Lactuca/microbiologia , Raízes de Plantas/microbiologia , Poluentes do Solo/metabolismo , Microplásticos/toxicidade , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Tamanho da Partícula
8.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513516

RESUMO

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Assuntos
Lactuca , Microplásticos , Microplásticos/análise , Microplásticos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Solo/química
9.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
10.
Environ Pollut ; 344: 123213, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158010

RESUMO

Microplastics (MPs) are recognized as emergent pollutants and have become a significant environmental concern, especially when combined with other contaminants. In this study, earthworms, specifically Eisenia andrei, were exposed to MPs (at a concentration of 10 µg kg-1 of soil), herbicide 2,4-D (7 mg kg-1 of soil), and a combination of the two for 7 and 14 days. The chemical uptake in the earthworms was measured, and the bacterial and archaeal diversities in both the soil and earthworm gut were analyzed, along with the metabolomic profiles. Additionally, data integration of the two omics approaches was performed to correlate changes in gut microbial diversity and the different metabolites. Our results demonstrated that earthworms ingested MPs and increased 2,4-D accumulation. More importantly, high-throughput sequencing revealed a shift in microbial diversity depending on single or mixture exposition. Metabolomic data demonstrated an important modulation of the metabolites related to oxidative stress, inflammatory system, amino acids synthesis, energy, and nucleic acids metabolism, being more affected in case of co-exposure. Our investigation revealed the potential risks of MPs and 2,4-D herbicide combined exposure to earthworms and soil fertility, thus broadening our understanding of MPs' toxicity and impacts on terrestrial environments.


Assuntos
Herbicidas , Microbiota , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Microplásticos/metabolismo , Plásticos/toxicidade , Oligoquetos/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/análise , Herbicidas/toxicidade , Herbicidas/metabolismo , Fenoxiacetatos/metabolismo , Metaboloma , Solo/química , Ácido 2,4-Diclorofenoxiacético/toxicidade
11.
Microorganisms ; 11(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36985161

RESUMO

Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).

12.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238842

RESUMO

Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.

13.
Antioxidants (Basel) ; 12(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830078

RESUMO

The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.

14.
Front Microbiol ; 14: 1221633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601382

RESUMO

Plant growth-promoting rhizobacteria (PGPR) with antagonistic activity toward plant pathogenic fungi are valuable candidates for the development of novel plant protection products based on biocontrol activity. The very first step in the formulation of such products is to screen the potential effectiveness of the selected microorganism(s). In this study, non-pathogenic rhizobacteria were isolated from the rhizosphere of tomato plants and evaluated for their biocontrol activity against three species of mycotoxin-producing Alternaria. The assessment of their biocontrol potential involved investigating both fungal biomass and Alternaria toxin reduction. A ranking system developed allowed for the identification of the 12 best-performing strains among the initial 85 isolates. Several rhizobacteria showed a significant reduction in fungal biomass (up to 76%) and/or mycotoxin production (up to 99.7%). Moreover, the same isolates also demonstrated plant growth-promoting (PGP) traits such as siderophore or IAA production, inorganic phosphate solubilization, and nitrogen fixation, confirming the multifaceted properties of PGPRs. Bacillus species, particularly B. amyloliquefaciens and two strains of B. subtilis, showed the highest efficacy in reducing fungal biomass and were also effective in lowering mycotoxin production. Isolates such as Enterobacter ludwigii, Enterobacter asburiae, Serratia nematodiphila, Pantoea agglomerans, and Kosakonia cowanii showed moderate efficacy. Results suggest that by leveraging the diverse capabilities of different microbial strains, a consortium-based approach would provide a broader spectrum of effectiveness, thereby signaling a more encouraging resolution for sustainable agriculture and addressing the multifaceted nature of crop-related biotic challenges.

15.
Food Chem Toxicol ; 176: 113779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062331

RESUMO

This study aims to provide information on the behaviour and biopersistence rate (BP) of metallic nanoparticles (Ag-NPs, TiO2-NPs, ZnO-NPs) naturally occurring in canned seafood and subjected to static in vitro digestion. Single particle ICP-MS analysis was performed to determine NPs distribution and concentrations in oral, gastric, and intestinal digests. Depending on the conditions of the digestive phase and the sample matrix, the phenomena of agglomeration and dispersion were highlighted and confirmed by Dynamic Light Scattering (DLS) technique. In standard suspensions, Ag-NPs had lower biopersistence (BP) than ZnO and TiO2-NPs (BP 34%, 89% and >100%, respectively). Among Ag-NPs and TiO2-NPs naturally present in the food matrix, those in canned tuna were more degradable than those in canned clam (BP Ag-NPs 36% vs. > 100%; BP TiO2-NPs 96% vs. > 100%), while BP ZnO-NPs showed high biopersistence in both seafood matrix (>100%). The biopersistence rates were higher than the recommended limit set by European Food Safety Authority (EFSA) (12%), referred to nanotechnologies to be applied in the food and feed chain, thus the investigated naturally occurring NPs cannot be considered readily degradable.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/análise , Titânio , Alimentos Marinhos/análise , Trato Gastrointestinal
16.
J Hazard Mater ; 453: 131331, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060751

RESUMO

Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Metagenômica , Fermentação , Nanopartículas Metálicas/toxicidade , Titânio , Metabolômica , Escherichia coli , Digestão
17.
Front Plant Sci ; 14: 1236199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711298

RESUMO

The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.

18.
Plant Sci ; 337: 111873, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739018

RESUMO

This study aimed to assess the effectiveness of plant growth-promoting rhizobacteria (PGPR; Pseudomonas strain So_08) and arbuscular mycorrhizal fungi (AMF; Rhizoglomus irregulare BEG72 and Funneliformis mosseae BEG234) in mitigating the detrimental effects of cadmium (Cd) and zinc (Zn) stress in tomato plants. Plant biomass, root morphology, leaf relative water content, membrane stability, photosynthetic performance, chlorophyll content, and heavy metals (HMs) accumulation were determined. Furthermore, an ionomic profile was conducted to investigate whether microbial inoculants affected the uptake and allocation of macro- and micronutrients. Metabolomics with pathway analysis of both roots and leaves was performed to unravel the mechanisms underlying the differential responses to HMs stress. The findings revealed that the levels of HMs did not significantly affect plant growth parameters; however, they affected membrane stability, photosynthetic performance, nutrient allocation, and chlorophyll content. Cadmium was mainly accumulated in roots, whilst Zn exhibited accumulation in various plant organs. Our findings demonstrate the beneficial effects of PGPR and AMF in mitigating Cd and Zn stress in tomato plants. The microbial inoculations improved physiological parameters and induced differential accumulation of macro- and micronutrients, modulating nutrient uptake balance. These results provide insights into the mechanisms underlying the plant-microbe interactions and highlight the differential modulation of the biosynthetic pathways of secondary metabolites related to oxidative stress response, membrane lipids stability, and phytohormone crosstalk.

19.
Microb Ecol ; 64(3): 692-701, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22584298

RESUMO

Litter soil cover constitutes an important micro-ecosystem in sustainable viticulture having a key role in nutrient cycling and serving as a habitat of complex microbial communities. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are known to regulate nitrification in soil while little is known regarding their function and diversity in litter. We investigated the effects of two fungicides, penconazole and cyprodinil, commonly used in vineyards, on the function and diversity of total and active AOB and AOA in a microcosm study. Functional changes measured via potential nitrification and structural changes assessed via denaturating gradient gel electrophoresis (DGGE) at the DNA and RNA levels were contrasted with pesticide dissipation in the litter layer. The latter was inversely correlated with potential nitrification, which was temporarily inhibited at the initial sampling dates (0 to 21 days) when nearly 100 % of the applied pesticide amounts was still present in the litter. Fungicides induced changes in AOB and AOA communities with RNA-DGGE analysis showing a higher sensitivity. AOA were more responsive to pesticide application compared to AOB. Potential nitrification was less sensitive to the fungicides and was restored faster than structural changes, which persisted. These results support the theory of microbial redundancy for nitrification in a stressed litter environment.


Assuntos
Amônia/metabolismo , Antifúngicos/farmacologia , Archaea/efeitos dos fármacos , Betaproteobacteria/efeitos dos fármacos , Pirimidinas/farmacologia , Microbiologia do Solo , Triazóis/farmacologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Nitrificação , Ciclo do Nitrogênio , Oxirredução , Reação em Cadeia da Polimerase/métodos , RNA Arqueal/química , RNA Arqueal/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Solo/análise
20.
Microb Ecol ; 64(4): 1028-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22688860

RESUMO

Ammonia oxidation has been intensively studied for its sensitivity to environmental shifts and stresses. However, acute stress effects on the occurrence and composition of ammonia oxidizing bacteria (AOB) and archaea (AOA) based on expression of related molecular markers in complex soil environments have been to an extent overlooked, particularly concerning transient but commonly occurring environmental changes like soil moisture shifts. The present study investigates the responses of AOB and AOA to moisture shifts and high Zn soil content. AmoA gene copies and transcripts of AOB and AOA along with potential nitrification activity were measured in a soil microcosm approach for investigating the referred environmental shifts. Moisture change from 87 to 50 % of the water holding capacity caused a ~99 % reduction of AOB but not of AOA amoA transcripts that did not change significantly. Increasing applied zinc concentrations resulted in a reduction of potential nitrification rates and negatively affected studied gene expressions of both AOB and AOA, with AOB being more responsive. Both 16 S rRNA and amoA transcripts of AOB had an inverse relation to the applied zinc, indicating a gradual loss in total cell activity. Our results suggest the existence of pronounced differences between AOB and AOA concerning ammonia oxidation activity.


Assuntos
Amônia/metabolismo , Archaea/fisiologia , Bactérias/metabolismo , Resposta ao Choque Térmico , Microbiologia do Solo , Água , Zinco/farmacologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , DNA Arqueal/análise , DNA Arqueal/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Ecossistema , Nitrificação , Oxirredução , Oxirredutases/genética , Reação em Cadeia da Polimerase , Solo/química , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa