Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 85(20): 13298-13305, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32924485

RESUMO

Difluorobenzodioxole is an important functional group found in both pharmaceuticals and agrochemicals. The late-stage introduction of this functional group is challenged by typical fluorination conditions of HF and strong oxidants. Here, we demonstrate that a range of difluorobenzodioxoles can be prepared from catechols in two steps through conversion into thionobenzodioxoles, followed by desulfurative fluorination with silver(I) fluoride. These mild reaction conditions are compatible with a variety of functional groups and enable access to a range of functionalized difluorobenzodioxoles.

2.
Chem Sci ; 15(6): 2211-2220, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332824

RESUMO

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa