Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(13): 6770-6783, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37309889

RESUMO

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double-stranded breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs. Ablating phosphorylation at T4102 attenuates DNA-PKcs kinase activity and this destabilizes the interaction between DNA-PKcs and the Ku-DNA complex, resulting in decreased assembly and stabilization of the NHEJ machinery at DSBs. Phosphorylation at T4102 promotes NHEJ, radioresistance, and increases genomic stability following DSB induction. Collectively, these findings establish a key role for ATM in NHEJ-dependent repair of DSBs through positive regulation of DNA-PKcs.


Assuntos
Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Humanos , Proteína Quinase Ativada por DNA/genética , Reparo do DNA , Treonina/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA por Junção de Extremidades , DNA/genética
2.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778257

RESUMO

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double strand breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PK cs ), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs. Phosphorylation at T4102 stabilizes the interaction between DNA-PK cs and the Ku-DNA complex and promotes assembly and stabilization of the NHEJ machinery at DSBs. Ablating phosphorylation at this site results in decreased NHEJ, radiosensitivity, and increased radiation-induced genomic instability. Collectively, these findings establish a key role for ATM in NHEJ-dependent repair of DSBs through positive regulation of DNA-PK cs .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa