Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(9): 609-620, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949516

RESUMO

Chilika, a native buffalo breed of the Eastern coast of India, is mainly distributed around the Chilika brackish water lake connected with the Bay of Bengal Sea. This breed possesses a unique ability to delve deep into the salty water of the lake and stay there to feed on local vegetation of saline nature. Adaptation to salinity is a genetic phenomenon; however, the genetic basis underlying salinity tolerance is still limited in animals, specifically in livestock. The present study explores the genetic evolution that unveils the Chilika buffalo's adaptation to the harsh saline habitat, including both water and food systems. For this study, whole genome resequencing data on 18 Chilika buffalo and for comparison 10 Murrah buffalo of normal habitat were generated. For identification of selection sweeps, intrapopulation and interpopulation statistics were used. A total of 709, 309, 468, and 354 genes were detected to possess selection sweeps in Chilika buffalo using the nucleotide diversity (θπ), Tajima's D, nucleotide diversity ratio (θπ-ratio), and FST methods, respectively. Further analysis revealed a total of 23 genes including EXOC6B, VPS8, LYPD1, VPS35, CAMKMT, NCKAP5, COMMD1, myosin light chain kinase 3 (MYLK3), and B3GNT2 were found to be common by all the methods. Furthermore, functional annotation study of identified genes provided pathways such as MAPK signaling, renin secretion, endocytosis, oxytocin signaling pathway, etc. Gene network analysis enlists that hub genes provide insights into their interactions with each other. In conclusion, this study has highlighted the genetic basis underlying the local adaptive function of Chilika buffalo under saline environment.NEW & NOTEWORTHY Indian Chilika buffaloes are being maintained on extensive grazing system and have a unique ability to convert local salty vegetation into valuable human food. However, adaptability to saline habitat of Chilika buffalo has not been explored to date. Here, we identified genes and biological pathways involved, such as MAPK signaling, renin secretion, endocytosis, and oxytocin signaling pathway, underlying adaptability of Chilika buffalo to saline environment. This investigation shed light on the mechanisms underlying the buffalo's resilience in its native surroundings.


Assuntos
Búfalos , Seleção Genética , Animais , Búfalos/genética , Búfalos/fisiologia , Adaptação Fisiológica/genética , Índia , Salinidade , Tolerância ao Sal/genética , Evolução Molecular , Genoma/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
2.
BMC Genomics ; 25(1): 874, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294565

RESUMO

BACKGROUND: Goat milk is gaining popularity as a superior alternative to bovine milk due to its closer resemblance to human milk. Understanding the molecular processes underlying lactation is crucial for improving milk quality and production in goats. However, the genetic mechanisms governing lactation in goats, particularly in indigenous breeds like the Jakhrana, remain largely unexplored. RESULTS: In this study, we performed a comprehensive transcriptomic analysis of Jakhrana goat mammary glands during early and late lactation stages. We isolated milk somatic cells and conducted RNA sequencing, followed by transcript quantification and mapping against the ARS1.2 Capra hircus reference assembly. Our analysis identified differentially expressed genes (DEGs) and commonly expressed genes (CEGs) across the lactation phases. Early lactation showed enrichment of genes encoding antimicrobial peptides and lubrication proteins, while late lactation exhibited heightened expression of genes encoding major milk proteins. Additionally, DEG analysis revealed upregulation of pivotal genes, such as the ABC transporter gene MRP4, implicated in modulating milk composition and quality. CONCLUSION: Our findings provide insights into the genetic mechanisms underlying lactation dynamics in the Jakhrana goat. Understanding these mechanisms could help in improving milk production and quality in goats, benefiting both the dairy industry and consumers.


Assuntos
Perfilação da Expressão Gênica , Cabras , Lactação , Glândulas Mamárias Animais , Animais , Cabras/genética , Cabras/metabolismo , Lactação/genética , Feminino , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Transcriptoma , Proteínas do Leite/metabolismo , Proteínas do Leite/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa