Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912240

RESUMO

Somatic polyploidization, an adaptation by which cells increase their DNA content to support growth, is observed in many cell types, including cardiomyocytes. Although polyploidization is believed to be beneficial, progression to a polyploid state is often accompanied by loss of proliferative capacity. Recent work suggests that genetics heavily influence cardiomyocyte ploidy. However, the developmental course by which cardiomyocytes reach their final ploidy state has only been investigated in select backgrounds. Here, we assessed cardiomyocyte number, cell cycle activity, and ploidy dynamics across two divergent mouse strains: C57BL/6J and A/J. Both strains are born and reach adulthood with comparable numbers of cardiomyocytes; however, the end composition of ploidy classes and developmental progression to reach the final state differ substantially. We expand on previous findings that identified Tnni3k as a mediator of cardiomyocyte ploidy and uncover a role for Runx1 in ploidy dynamics and cardiomyocyte cell division, in both developmental and injury contexts. These data provide novel insights into the developmental path to cardiomyocyte polyploidization and challenge the paradigm that hypertrophy is the sole mechanism for growth in the postnatal heart.


Assuntos
Miócitos Cardíacos , Ploidias , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Poliploidia , Patrimônio Genético , Proteínas Serina-Treonina Quinases/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38847758

RESUMO

Factors responsible for cardiomyocyte proliferation could serve as potential therapeutics to stimulate endogenous myocardial regeneration following insult, such as ischemic injury. A previously published forward genetics approach on cardiomyocyte cell cycle and ploidy led us to the transcription factor, RUNX1. Here, we examine the effect of Runx1 on cardiomyocyte cell cycle during postnatal development and cardiac regeneration using cardiomyocyte-specific gain- and loss-of-function mouse models. RUNX1 is expressed in cardiomyocytes during early postnatal life, decreases to negligible levels by 3 weeks of age, and increases upon myocardial injury, all consistent with observed rates of cardiomyocyte cell cycle activity. Loss of Runx1 transiently stymied cardiomyocyte cell cycle activity during normal postnatal development, a result that corrected itself and did not extend to the context of neonatal heart regeneration. On the other hand, cardiomyocyte-specific Runx1 overexpression resulted in an expansion of diploid cardiomyocytes in uninjured hearts and expansion of 4N cardiomyocytes in the context of neonatal cardiac injury, suggesting Runx1 overexpression is sufficient to induce cardiomyocyte cell cycle responses. Persistent overexpression of Runx1 for >1 month continued to promote cardiomyocyte cell cycle activity resulting in substantial hyperpolyploidization (≥8N DNA content). This persistent cell cycle activation was accompanied by ventricular dilation and adverse remodeling, raising the concern that continued cardiomyocyte cell cycling can have detrimental effects.

3.
J Mol Cell Cardiol ; 183: 22-26, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597489

RESUMO

Cardiomyocyte proliferation is a difficult phenomenon to capture and prove. Here we employ a retrospective analysis of single cell ventricular suspensions to definitively identify cardiomyocytes that have completed cell division. Through this analysis we determined that the capacity of cardiomyocytes to re-enter the cell cycle and complete cell division after injury are separate and variable traits. Further, we provide evidence that Tnni3k definitively influences both early and final stages of the cell cycle.


Assuntos
Coração , Miócitos Cardíacos , Ciclo Celular , Divisão Celular , Proliferação de Células , Ventrículos do Coração , Miócitos Cardíacos/metabolismo , Estudos Retrospectivos , Animais , Camundongos
4.
J Mol Cell Cardiol ; 163: 9-19, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610340

RESUMO

Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.


Assuntos
Acetiltransferases , Infarto do Miocárdio , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Animais , Apoptose/genética , Ciclo Celular , Lisina Acetiltransferase 5 , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores
5.
J Bacteriol ; 200(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224439

RESUMO

Vibrio cholerae controls the pathogenicity of interactions with arthropod hosts via the activity of the CrbS/R two-component system. This signaling pathway regulates the consumption of acetate, which in turn alters the relative virulence of interactions with arthropods, including Drosophila melanogaster CrbS is a histidine kinase that links a transporter-like domain to its signaling apparatus via putative STAC and PAS domains. CrbS and its cognate response regulator are required for the expression of acetyl coenzyme A (acetyl-CoA) synthetase (product of acs), which converts acetate to acetyl-CoA. We demonstrate that the STAC domain of CrbS is required for signaling in culture; without it, acs transcription is reduced in LB medium, and V. cholerae cannot grow on acetate minimal media. However, the strain remains virulent toward Drosophila and expresses acs similarly to the wild type during infection. This suggests that there is a unique signal or environmental variable that modulates CrbS in the gastrointestinal tract of Drosophila Second, we present evidence in support of CrbR, the response regulator that interacts with CrbS, binding directly to the acs promoter, and we identify a region of the promoter that CrbR may target. We further demonstrate that nutrient signals, together with the cAMP receptor protein (CRP)-cAMP system, control acs transcription, but regulation may occur indirectly, as CRP-cAMP activates the expression of the crbS and crbR genes. Finally, we define the role of the Pta-AckA system in V. cholerae and identify redundancy built into acetate excretion pathways in this pathogen.IMPORTANCE CrbS is a member of a unique family of sensor histidine kinases, as its structure suggests that it may link signaling to the transport of a molecule. However, mechanisms through which CrbS senses and communicates information about the outside world are unknown. In the Vibrionaceae, orthologs of CrbS regulate acetate metabolism, which can, in turn, affect interactions with host organisms. Here, we situate CrbS within a larger regulatory framework, demonstrating that crbS is regulated by nutrient-sensing systems. Furthermore, CrbS domains may play various roles in signaling during infection and growth in culture, suggesting a unique mechanism of host recognition. Finally, we define the roles of additional pathways in acetate flux, as a foundation for further studies of this metabolic nexus point.


Assuntos
Ácido Acético/metabolismo , Artrópodes/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Histidina Quinase/metabolismo , Transdução de Sinais , Vibrio cholerae/enzimologia , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Drosophila melanogaster/microbiologia , Histidina Quinase/genética , Masculino , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Vibrio cholerae/fisiologia , Virulência
6.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143508

RESUMO

Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.


Assuntos
Acetatos/metabolismo , Drosophila melanogaster/microbiologia , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Drosophila melanogaster/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Vibrio cholerae/genética , Virulência
7.
Proc Natl Acad Sci U S A ; 108(49): 19737-42, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106284

RESUMO

Vibrio cholerae is an estuarine bacterium and the human pathogen responsible for the diarrheal disease cholera. In the environment, arthropods are proposed to be carriers and reservoirs of V. cholerae. However, the molecular basis of the association between V. cholerae and viable arthropods has not been elucidated previously. Here, we show that the V. cholerae Vibrio polysaccharide (VPS)-dependent biofilm is highly activated upon entry into the arthropod intestine and is specifically required for colonization of the arthropod rectum. Although the V. cholerae VPS-dependent biofilm has been studied in the laboratory for many years, the function of this biofilm in the natural habitats of V. cholerae has been elusive. Our results provide evidence that the VPS-dependent biofilm is required for intestinal colonization of an environmental host.


Assuntos
Biofilmes/crescimento & desenvolvimento , Drosophila melanogaster/microbiologia , Intestinos/microbiologia , Vibrio cholerae/fisiologia , Animais , Cólera/microbiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/metabolismo , Microscopia Confocal , Mutação , Reto/microbiologia , Fatores de Tempo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
8.
Curr Top Dev Biol ; 156: 245-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556425

RESUMO

The regulation of ploidy in cardiomyocytes is a complex and tightly regulated aspect of cardiac development and function. Cardiomyocyte ploidy can range from diploid (2N) to 8N or even 16N, and these states change during key stages of development and disease progression. Polyploidization has been associated with cellular hypertrophy to support normal growth of the heart, increased contractile capacity, and improved stress tolerance in the heart. Conversely, alterations to ploidy also occur during cardiac pathogenesis of diseases, such as ischemic and non-ischemic heart failure and arrhythmia. Therefore, understanding which genes control and modulate cardiomyocyte ploidy may provide mechanistic insight underlying cardiac growth, regeneration, and disease. This chapter summarizes the current knowledge regarding the genes involved in the regulation of cardiomyocyte ploidy. We discuss genes that have been directly tested for their role in cardiomyocyte polyploidization, as well as methodologies used to identify ploidy alterations. These genes encode cell cycle regulators, transcription factors, metabolic proteins, nuclear scaffolding, and components of the sarcomere, among others. The general physiological and pathological phenotypes in the heart associated with the genetic manipulations described, and how they coincide with the respective cardiomyocyte ploidy alterations, are further discussed in this chapter. In addition to being candidates for genetic-based therapies for various cardiac maladies, these genes and their functions provide insightful evidence regarding the purpose of widespread polyploidization in cardiomyocytes.


Assuntos
Miócitos Cardíacos , Poliploidia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proliferação de Células/fisiologia , Fatores de Transcrição/metabolismo
9.
J Exp Med ; 197(2): 233-43, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12538662

RESUMO

Selection of immune escape variants impairs the ability of the immune system to sustain an efficient antiviral response and to control retroviral infections. Like other retroviruses, mouse mammary tumor virus (MMTV) is not efficiently eliminated by the immune system of susceptible mice. In contrast, MMTV-infected I/LnJ mice are capable of producing IgG2a virus-neutralizing antibodies, sustain this response throughout their life, and secrete antibody-coated virions into the milk, thereby preventing infection of their progeny. Antibodies were produced in response to several MMTV variants and were cross-reactive to them. Resistance to MMTV infection was recessive and was dependent on interferon (IFN)-gamma production, because I/LnJ mice with targeted deletion of the INF-gamma gene failed to produce any virus-neutralizing antibodies. These findings reveal a novel mechanism of resistance to retroviral infection that is based on a robust and sustained IFN-gamma-dependent humoral immune response.


Assuntos
Anticorpos Antivirais/biossíntese , Interferon gama/biossíntese , Vírus do Tumor Mamário do Camundongo/imunologia , Animais , Animais Recém-Nascidos , Reações Cruzadas , Feminino , Variação Genética , Imunoglobulina G/biossíntese , Interferon gama/deficiência , Interferon gama/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/virologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Leite/virologia , Testes de Neutralização , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Superantígenos/genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
10.
J Virol ; 82(3): 1438-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18057254

RESUMO

Mice of the I/LnJ inbred strain are unique in their ability to mount a robust and sustained humoral immune response capable of neutralizing infection with a betaretrovirus, mouse mammary tumor virus (MMTV). Virus-neutralizing antibodies (Abs) coat MMTV virions secreted by infected cells, preventing virus spread and hence the formation of mammary tumors. To investigate whether I/LnJ mice resist infection with other retroviruses besides MMTV, the animals were infected with murine leukemia virus (MuLV), a gammaretrovirus. MuLV-infected I/LnJ mice produced virus-neutralizing Abs that block virus transmission and virally induced disease. Generation of virus-neutralizing Abs required gamma interferon but was independent of interleukin-12. This unique mechanism of retrovirus resistance is governed by a single recessive gene, virus infectivity controller 1 (vic1), mapped to chromosome 17. In addition to controlling the antivirus humoral immune response, vic1 is also required for an antiviral cytotoxic response. Both types of responses were maintained in mice of the susceptible genetic background but congenic for the I/LnJ vic1 locus. Although the vic1-mediated resistance to MuLV resembles the mechanism of retroviral recovery controlled by the resistance to Friend virus 3 (rfv3) gene, the rfv3 gene has been mapped to chromosome 15 and confers resistance to MuLV but not to MMTV. Thus, we have identified a unique virus resistance mechanism that controls immunity against two distinct retroviruses.


Assuntos
Imunidade Inata/genética , Vírus da Leucemia Murina/imunologia , Vírus do Tumor Mamário do Camundongo/imunologia , Camundongos Endogâmicos/virologia , Infecções por Retroviridae/genética , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Mapeamento Cromossômico , Feminino , Interferons/imunologia , Interleucina-12/imunologia , Masculino , Camundongos , Testes de Neutralização
11.
Methods Mol Biol ; 1839: 77-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30047056

RESUMO

Studies of Vibrio cholerae pathogenesis in the context of novel eukaryotic model systems have expanded our understanding of genes that underlie V. cholerae interactions with humans, as well as host organisms in the environment. These model systems have also helped uncover new functions for many gene products, revealing previously unknown virulence mechanisms. The Drosophila model for V. cholerae infection is a powerful tool for discovering new genetic pathways that govern bacterial physiology and colonization in the arthropod gastrointestinal tract. Assays to measure both virulence and colonization have been established and are easily adopted in labs unfamiliar with Drosophila work. Experiments to compare survival of flies colonized with different bacterial mutants are simple to perform and can be completed in less than a week, allowing colonization to be quantified and localized easily. The availability of molecular and genetic tools for the fly enables further exploration of host factors that restrict V. cholerae colonization and invasive infection. Based on the Drosophila system, a house fly (Musca domestica) model of V. cholerae colonization has also been developed. The new house fly model may prove a useful tool for examining V. cholerae infection dynamics in the context of a host carrying a complex microbial community, with a fundamentally different ecology that may increase its chances of acting as a vector for cholera disease.


Assuntos
Cólera/microbiologia , Vibrio cholerae/fisiologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Microscopia Confocal
12.
Nat Microbiol ; 3(2): 243-252, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180725

RESUMO

Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization.


Assuntos
Artrópodes/microbiologia , Intestinos/microbiologia , Percepção de Quorum/fisiologia , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Tecido Adiposo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiologia , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/fisiologia , Lipólise , Tamanho do Órgão , Transdução de Sinais , Somatomedinas/genética , Ácido Succínico/metabolismo , Triglicerídeos/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Virulência/genética
13.
Microbes Infect ; 9(11): 1351-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17890125

RESUMO

Environmental V. cholerae (Vc) have the potential for virulence in people and they may also be a reservoir of accessory virulence genes. We infected mice with two non-O1, non-O139 Vc (TP and SIO) that were isolated in San Diego County and compared them to Vc O1 El Tor N16961 using a model of pneumonia in adult mice. Live but not heat killed Vc El Tor and TP caused fatal hemorrhagic pneumonia despite a >90% decrease in CFU in 24h suggesting the disease was toxin mediated. SIO did not cause pneumonia in normal mice but neutropenic, gp91phox and complement (C3) mice were more susceptible to all three strains. TP and SIO lack ctx but have rtxA, hlyA, and hapA, genes that encode virulence factors in Vc El Tor. The explanation for the enhanced virulence of TP remains to be determined.


Assuntos
Água do Mar/microbiologia , Vibrio cholerae não O1/patogenicidade , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxina da Cólera/genética , Contagem de Colônia Microbiana , Complemento C3/deficiência , Complemento C3/imunologia , Feminino , Proteínas Hemolisinas/genética , Pulmão/microbiologia , Pulmão/patologia , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutropenia/imunologia , Pneumonia/microbiologia , Análise de Sobrevida , Vibrio cholerae não O1/isolamento & purificação , Virulência
14.
PLoS One ; 12(5): e0177825, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542616

RESUMO

The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell's most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe's unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.


Assuntos
Acetato-CoA Ligase/genética , Proteínas de Bactérias/metabolismo , Meio Ambiente , Variação Genética , Transcrição Gênica , Acetatos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/metabolismo , Domínios Proteicos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Vibrio cholerae/citologia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Virulência
15.
Cell Host Microbe ; 16(5): 592-604, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25525791

RESUMO

Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera.


Assuntos
Acetatos/metabolismo , Interações Hospedeiro-Patógeno , Insulinas/metabolismo , Intestinos/microbiologia , Metabolismo dos Lipídeos , Vibrio cholerae/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxina da Cólera/toxicidade , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Enterócitos/metabolismo , Imunidade Inata , Microbiota , Transdução de Sinais , Fatores de Virulência
16.
mBio ; 4(3): e00337-13, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23781070

RESUMO

Vibrio cholerae is an estuarine bacterium and an intestinal pathogen of humans that causes severe epidemic diarrhea. In the absence of adequate mammalian models in which to study the interaction of V. cholerae with the host intestinal innate immune system, we have implemented Drosophila melanogaster as a surrogate host. We previously showed that immune deficiency pathway loss-of-function and mustard gain-of-function mutants are less susceptible to V. cholerae infection. We find that although the overall burden of intestinal bacteria is not significantly different from that of control flies, intestinal stem cell (ISC) division is increased in these mutants. This led us to examine the effect of V. cholerae on ISC division. We report that V. cholerae infection and cholera toxin decrease ISC division. Because IMD pathway and Mustard mutants, which are resistant to V. cholerae, maintain higher levels of ISC division during V. cholerae infection, we hypothesize that suppression of ISC division is a virulence strategy of V. cholerae and that accelerated epithelial regeneration protects the host against V. cholerae. Extension of these findings to mammals awaits the development of an adequate experimental model.


Assuntos
Divisão Celular/efeitos dos fármacos , Toxina da Cólera/toxicidade , Drosophila melanogaster/microbiologia , Células-Tronco/fisiologia , Vibrio cholerae/patogenicidade , Animais , Cólera/microbiologia , Cólera/patologia , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Imunossupressores/metabolismo , Imunossupressores/toxicidade , Células-Tronco/microbiologia , Vibrio cholerae/metabolismo
17.
Environ Microbiol Rep ; 2(1): 198-207, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23766017

RESUMO

Non-toxigenic non-O1, non-O139 Vibrio cholerae strains isolated from both environmental and clinical settings carry a suite of virulence factors aside from cholera toxin. Among V. cholerae strains isolated from coastal waters of southern California, this includes cholix toxin, an ADP-ribosylating factor that is capable of halting protein synthesis in eukaryotic cells. The prevalence of the gene encoding cholix toxin, chxA, was assessed among a collection of 155 diverse V. cholerae strains originating from both clinical and environmental settings in Bangladesh and Mexico and other countries around the globe. The chxA gene was present in 47% of 83 non-O1, non-O139 strains and 16% of 72 O1/O139 strains screened as part of this study. A total of 86 chxA gene sequences were obtained, and phylogenetic analysis revealed that they fall into two distinct clades. These two clades were also observed in the phylogenies of several housekeeping genes, suggesting that the divergence observed in chxA extends to other regions of the V. cholerae genome, and most likely has arisen from vertical descent rather than horizontal transfer. Our results clearly indicate that ChxA is a major toxin of V. cholerae with a worldwide distribution that is preferentially associated with non-pandemic strains.

18.
J Biol Chem ; 283(16): 10671-8, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18276581

RESUMO

The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Vibrio cholerae/metabolismo , ADP Ribose Transferases/metabolismo , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/fisiologia , Animais , Artemia/metabolismo , Toxinas Bacterianas/química , Biotinilação , Toxina da Cólera/química , Citoplasma/metabolismo , Fibroblastos/metabolismo , Concentração Inibidora 50 , Camundongos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Estrutura Terciária de Proteína
19.
J Immunol ; 175(11): 7543-9, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16301663

RESUMO

Previously, we showed that IFN-gamma elicited by mouse mammary tumor virus (MMTV) infection in I/LnJ mice stimulated production of virus-neutralizing Abs, mostly of the IgG2a isotype. These Abs coated virions secreted by infected I/LnJ cells, and thus completely prevented virus transmission to offspring. However, the mechanism of virus neutralization by isotype-specific Abs remained unknown. Ab coating is capable of blocking virus infection by interfering with receptor-virus binding, by virus opsonization, by complement activation, and via FcgammaR-mediated effector mechanisms. The aim of the studies described in this work was to uncover the cellular basis of anti-virus Ab production, to evaluate the importance of the IgG2a subclass of IgGs in virus neutralization, and to investigate which of the blocking mechanisms plays a role in virus neutralization. We showed that I/LnJ-derived bone marrow cells, specifically IFN-gamma-producing CD4+ T cells, were key cells conferring resistance to MMTV infection in susceptible mice upon transfer. We also established that a unique bias in the subclass selection toward the IgG2a isotype in infected I/LnJ mice was not due to their potent neutralizing ability, as anti-virus Abs of other isotypes were also able to neutralize the virus, but were a product of virally induced IFN-gamma. Finally, we demonstrated that F(ab')2 of anti-MMTV IgGs neutralized the virus as efficiently as total IgGs, suggesting that Ab-mediated interference with viral entry is the sole factor inhibiting virus replication in I/LnJ mice. We propose and discuss possible mechanisms by which infected I/LnJ mice eradicate retrovirus.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/virologia , Imunidade Inata/imunologia , Vírus do Tumor Mamário do Camundongo/imunologia , Vírion/imunologia , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Infecções Tumorais por Vírus/imunologia
20.
J Bacteriol ; 187(9): 2992-3001, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15838025

RESUMO

Vibrio cholerae has multiple survival strategies which are reflected both in its broad distribution in many aquatic environments and its high genotypic diversity. To obtain additional information regarding the content of the V. cholerae genome, suppression subtractive hybridization (SSH) was used to prepare libraries of DNA sequences from two southern California coastal isolates which are divergent or absent in the clinical strain V. cholerae O1 El Tor N16961. More than 1,400 subtracted clones were sequenced. This revealed the presence of novel sequences encoding functions related to cell surface structures, transport, metabolism, signal transduction, luminescence, mobile elements, stress resistance, and virulence. Flanking sequence information was determined for loci of interest, and the distribution of these sequences was assessed for a collection of V. cholerae strains obtained from southern California and Mexican environments. This led to the surprising observation that sequences related to the toxin genes toxA, cnf1, and exoY are widespread and more common in these strains than those of the cholera toxin genes which are a hallmark of the pandemic strains of V. cholerae. Gene transfer among these strains could be facilitated by a 4.9-kbp plasmid discovered in one isolate, which possesses similarity to plasmids from other environmental vibrios. By investigating some of the nucleotide sequence basis for V. cholerae genotypic diversity, DNA fragments have been uncovered which could promote survival in coastal environments. Furthermore, a set of genes has been described which could be involved in as yet undiscovered interactions between V. cholerae and eukaryotic organisms.


Assuntos
DNA Bacteriano/genética , Genes Bacterianos , Vibrio cholerae/genética , Adenilil Ciclases/genética , Toxinas Bacterianas/genética , DNA Bacteriano/química , Endorribonucleases/genética , Exorribonucleases , Biblioteca Gênica , Variação Genética , Genoma Bacteriano , Luciferases Bacterianas/genética , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos , RNA Bacteriano/genética , Análise de Sequência de DNA , Especificidade da Espécie , Vibrio cholerae/isolamento & purificação , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa