Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 74(1): 173-184.e4, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797687

RESUMO

In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , DNA Primase/genética , DNA Primase/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DnaB Helicases/química , DnaB Helicases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hidrólise , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
2.
Mol Cell ; 66(5): 672-683.e4, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575662

RESUMO

The AAA+ Lon protease is conserved from bacteria to humans, performs crucial roles in protein homeostasis, and is implicated in bacterial pathogenesis and human disease. We investigated how Lon selectively degrades specific substrates among a diverse array of potential targets. We report the discovery of HspQ as a new Lon substrate, unique specificity-enhancing factor, and potent allosteric activator. Lon recognizes HspQ via a C-terminal degron, whose precise presentation, in synergy with multipartite contacts with the native core of HspQ, is required for allosteric Lon activation. Productive HspQ-Lon engagement enhances degradation of multiple new and known Lon substrates. Our studies reveal the existence and simultaneous utilization of two distinct substrate recognition sites on Lon, an HspQ binding site and an HspQ-modulated allosteric site. Our investigations unveil an unprecedented regulatory use of an evolutionarily conserved heat shock protein and present a distinctive mechanism for how Lon protease achieves temporally enhanced substrate selectivity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/metabolismo , Protease La/metabolismo , Yersinia pestis/enzimologia , Regulação Alostérica , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Choque Térmico/genética , Cinética , Protease La/genética , Ligação Proteica , Dobramento de Proteína , Proteólise , Especificidade por Substrato , Yersinia pestis/genética
3.
Biotechnol Bioeng ; 118(6): 2293-2300, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666234

RESUMO

Process analytical technology (PAT) is a fast-growing field within bioprocessing that enables innovation in biological drug manufacturing. This study demonstrates novel PAT methods for monitoring multiple quality attributes simultaneously during the ultrafiltration and diafiltration (UF/DF) process operation, the final step of monoclonal antibody (mAb) purification. Size exclusion chromatography (SEC) methods were developed to measure excipients arginine, histidine, and high molecular weight (HMW) species using a liquid chromatography (LC) system with autosampler for both on-line and at-line PAT modes. The methods were applied in UF/DF studies for the comparison of single-use tangential flow filtration (TFF) cassettes to standard reusable cassettes to achieve very high concentration mAb drug substance (DS) in the order of 100-200 g/L. These case studies demonstrated that single-use TFF cassettes are a functionally equivalent, low-cost alternative to standard reusable cassettes, and that the on-line PAT measurement of purity and excipient concentration was comparable to orthogonal offline methods. These PAT applications using an on-line LC system equipped with onboard sample dilution can become a platform system for monitoring of multiple attributes over a wide dynamic range, a potentially valuable tool for biological drug development and manufacturing.


Assuntos
Anticorpos Monoclonais/biossíntese , Ultrafiltração , Arginina , Cromatografia Líquida de Alta Pressão , Excipientes/química , Histidina , Tecnologia , Ultrafiltração/instrumentação
4.
Biotechnol Bioeng ; 118(9): 3593-3603, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185315

RESUMO

The biopharmaceutical industry is transitioning from currently deployed batch-mode bioprocessing to a highly efficient and agile next-generation bioprocessing with the adaptation of continuous bioprocessing, which reduces capital investment and operational costs. Continuous bioprocessing, aligned with FDA's quality-by-design platform, is designed to develop robust processes to deliver safe and effective drugs. With the deployment of knowledge-based operations, product quality can be built into the process to achieve desired critical quality attributes (CQAs) with reduced variability. To facilitate next-generation continuous bioprocessing, it is essential to embrace a fundamental shift-in-paradigm from "quality-by-testing" to "quality-by-design," which requires the deployment of process analytical technologies (PAT). With the adaptation of PAT, a systematic approach of process and product understanding and timely process control are feasible. Deployment of PAT tools for real-time monitoring of CQAs and feedback control is critical for continuous bioprocessing. Given the current deficiency in PAT tools to support continuous bioprocessing, we have integrated Infinity 2D-LC with a post-flow-splitter in conjunction with the SegFlow autosampler to the bioreactors. With this integrated system, we have established a platform for online measurements of titer and CQAs of monoclonal antibodies as well as amino acid analysis of bioreactor cell culture.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Modelos Teóricos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo
5.
Biotechnol Bioeng ; 117(12): 3766-3774, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32776504

RESUMO

Technologies capable of monitoring product quality attributes and process parameters in real time are becoming popular due to the endorsement of regulatory agencies and also to support the agile development of biotherapeutic pipelines. The utility of vibrational spectroscopic techniques such as Fourier transform mid-infrared (Mid-IR) and multivariate data analysis (MVDA) models allows the prediction of multiple critical attributes simultaneously in real time. This study reports the use of Mid-IR and MVDA model sensors for monitoring of multiple attributes (excipients and protein concentrations) in real time (measurement frequency of every 40 s) at ultrafiltration and diafiltration (UF/DF) unit operation of biologics manufacturing. The platform features integration of fiber optic Mid-IR probe sensors to UF/DF set up at the bulk solution and through a flow cell at the retentate line followed by automated Mid-IR data piping into a process monitoring software platform with pre-loaded partial least square regression (PLS) chemometric models. Data visualization infrastructure is also built-in to the platform so that upon automated PLS prediction of excipients and protein concentrations, the results were projected in a graphical or numerical format in real time. The Mid-IR predicted concentrations of excipients and protein show excellent correlation with the offline measurements by traditional analytical methods. Absolute percent difference values between Mid-IR predicted results and offline reference assay results were ≤5% across all the excipients and the protein of interest; which shows a great promise as a reliable process analytical technology tool.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrafiltração
6.
J Water Health ; 13(1): 42-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25719464

RESUMO

We present proof-of-concept results for the elimination of waterborne bacteria by reactive minerals. We exposed Escherichia coli MG1655 suspended in water to the reactive mineral pyrite (FeS2) at room temperature and ambient light. This slurry eliminates 99.9% of bacteria in fewer than 4 hours. We also exposed Escherichia coli to pyrite leachate (supernatant liquid from slurry after 24 hours), which eliminates 99.99% of bacteria over the same time-scale. Unlike SOlar water DISinfection (SODIS), our results do not depend on the presence of ultraviolet (UV) light. We confirmed this by testing proposed SODIS additive and known photo-catalyst anatase (TiO2) for antibacterial properties and found that, in contrast to pyrite, it does not eliminate E. coli under our experimental conditions. Previous investigations of naturally antibiotic minerals have focused on the medical applications of antibiotic clays, and thus have not been conducted under experimental conditions resembling those found in water purification. In our examination of the relevant literature, we have not found previously reported evidence for the use of reactive minerals in water sanitization. The results from this proof-of-concept experiment may have important implications for future directions in household water purification research.


Assuntos
Antibacterianos/farmacologia , Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Ferro/farmacologia , Sulfetos/farmacologia , Microbiologia da Água , Purificação da Água/métodos , Carga Bacteriana , Catalase/química , Quelantes/química , Ácido Edético/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Titânio/farmacologia , Poluentes da Água
7.
Mol Microbiol ; 85(1): 122-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22571636

RESUMO

Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain.


Assuntos
Francisella tularensis/patogenicidade , Macrófagos/microbiologia , RNA Bacteriano/genética , Tularemia/microbiologia , Sequência de Aminoácidos , Animais , Vacinas Bacterianas/imunologia , Sequência de Bases , Células Cultivadas , Feminino , Francisella tularensis/genética , Marcação de Genes , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutagênese Insercional , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Fagossomos/microbiologia , Estresse Fisiológico , Tularemia/imunologia , Vacinas Atenuadas/imunologia , Virulência
8.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34036936

RESUMO

In many bacteria and eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+(ATPases Associated with various cellular Activities) ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of Escherichia coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We have identified a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate that elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as in polymerase clamp loading and certain classes of DNA transposases.


Assuntos
Trifosfato de Adenosina/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Sítios de Ligação , DNA Bacteriano/genética , DnaB Helicases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
Hum Vaccin Immunother ; 16(11): 2586-2593, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693678

RESUMO

Despite major advances in vaccination over the past century, resurgence of vaccine-preventable illnesses has led the World Health Organization to identify vaccine hesitancy as a major threat to global health. Vaccine hesitancy may be fueled by health information obtained from a variety of sources, including new media such as the Internet and social media platforms. As access to technology has improved, social media has attained global penetrance. In contrast to traditional media, social media allow individuals to rapidly create and share content globally without editorial oversight. Users may self-select content streams, contributing to ideological isolation. As such, there are considerable public health concerns raised by anti-vaccination messaging on such platforms and the consequent potential for downstream vaccine hesitancy, including the compromise of public confidence in future vaccine development for novel pathogens, such as SARS-CoV-2 for the prevention of COVID-19. In this review, we discuss the current position of social media platforms in propagating vaccine hesitancy and explore next steps in how social media may be used to improve health literacy and foster public trust in vaccination.


Assuntos
COVID-19/prevenção & controle , Disseminação de Informação/métodos , Mídias Sociais , Recusa de Vacinação/psicologia , Vacinação/psicologia , COVID-19/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Prevenção Primária/métodos , Propaganda , SARS-CoV-2 , Recusa de Vacinação/estatística & dados numéricos , Doenças Preveníveis por Vacina/epidemiologia
10.
Sci Adv ; 6(21): eaba8404, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32490208

RESUMO

Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.


Assuntos
Endopeptidases , Peptídeo Hidrolases , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Peptídeo Hidrolases/metabolismo , Proteólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa