Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1067, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598129

RESUMO

Monitoring pesticide residue levels becomes crucial to maintain quality and guarantee food safety as the consumption of onion green leaves and immature and mature bulbs (either raw or processed) rises. A field experiment was conducted for two consecutive seasons with quizalofop-p-ethyl (5% EC) at 50 and 100 g a.i. ha-1 to evaluate weed control efficiency and to determine terminal residues. Post-emergence application of fop herbicide at 100 g a.i. ha-1 kept the weed density and dry weight reasonably at a lower level and enhanced the productivity of onion with higher economic returns. A rapid, sensitive, and analytical method was developed using high-performance liquid chromatography (HPLC) with excellent linearity (r2 > 0.99). The limit of quantification for quizalofop-p-ethyl was established at 0.04 mg kg-1 with signal to noise (S/N) ratio ≥ 10. The method was successfully applied and initial quantified residues were in the range of 2.5-4.4 mg kg-1 irrespective of seasons and doses. Finally, the presence of targeted herbicide residues in harvested samples was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) under optimized operating conditions. Dietary risk assessment assured harvested onions were safe for consumption at the recommended dose. It also can be concluded that quizalofop ethyl did not adversely influence soil micro-organisms at standard rates of application.


Assuntos
Herbicidas , Controle de Plantas Daninhas , Cebolas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Inocuidade dos Alimentos
2.
Arch Microbiol ; 204(11): 669, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224280

RESUMO

Existing pesticide formulation solvents generate volatile organic compounds (VOCs), are combustible, and are classed as hazardous air pollutants (HAPs), meaning they are detrimental to users and phytotoxic to crops. Green solvents are required in formulations due to regulations, health, and environmental concerns. In emulsifiable concentration (EC) formulations, the "green chemistry" movement has led to the use of less harmful solvents. After a detailed and comparative fungal growth inhibition assessment, the least harmful carrier solvent among four regularly used organic solvents [dimethyl sulfoxide (DMSO), dimethylformamide (DMF), aromatic hydrocarbon (C9), and methyl oleate] was chosen in this study. We employed methyl oleate (cis-9-Octadecenoic acid methyl ester) as a bio-based green reserver (60%) to create effective bioinspired EC formulations (30%) of Pongamia pinnata L extract utilising emulsifier blends (10 percent) based on the known toxicity order (DMF > DMSO > C9 > methyl oleate). EC1 outperformed the other thirteen formulations (EC1-EC13) in terms of emulsion stability, cold test, accelerated storage stability, flash point, and other metrics, proving its suitability for commercial production. Using four therapeutically appropriate concentrations of agricultural usage, in-vitro fungicidal effects against Alternaria solani and Phytophthora spp. were examined.A. solani (EC50 = 0.08 percent) showed the greatest growth suppression (87.4 percent) at the maximum dosage (1 percent), followed by Phytophthora sp. (71.1 percent) (EC50 = 0.49 percent). The study proved its utility in the production of environmentally acceptable green solvent-based herbal formulations as a long-term crop protection alternative to harmful chemical pesticides.


Assuntos
Poluentes Atmosféricos , Praguicidas , Compostos Orgânicos Voláteis , Dimetil Sulfóxido , Dimetilformamida , Emulsões , Ésteres , Ácido Oleico , Extratos Vegetais/química , Solventes/química , Compostos Orgânicos Voláteis/farmacologia
3.
J Agric Food Chem ; 72(2): 1017-1024, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170676

RESUMO

Locally sourced waste cooking oil (WCO) was successfully base-catalyzed and transesterified with methanol into biodiesel to produce biostimulant (nitrobenzene) formulations and replace high-risk carrier solvents. Ideal synthesis conditions were composed of 1% NaOH, MeOH/oil molar ratio (6:1), reaction temperature (65 °C), a 3 h mixing rate, and 97-98% yields. Gas chromatography-mass spectrometry (GC-MS) analysis identified five fatty acid methyl esters (FAMEs) including palmitic, linoleic, oleic, stearic, and eicosenoic acids with high solubilization and olfactory characteristics. Using anionic and nonionic emulsifiers in conjunction with recycled biodiesel, a stable emulsifiable concentrate (NB 35% EC) was created with greater storage stability, wettability, and spreading capabilities than those of organic solvent-based ones. The highest counts of fruits per plant (35.80), flowers per plant (60.00), yield per plant (3.56 kg), and yield per hectare (143.7 quintals) were recorded in treatments with 4 mL/L biodiesel-based EC in field bioassays. In addition to having superior biosafety, FAME-based EC exhibits minimal phytotoxicity and is less harmful to aquatic creatures. It was discovered that the average cost-effectiveness was 5.49 times less expensive than solvent-based EC. In order to utilize waste oils as a locally obtained, sustainable alternative solvent with a wide solubilization range, low ecotax profile, circular economy, and high renewable carbon index, this integrative technique was expanded.


Assuntos
Biocombustíveis , Óleos de Plantas , Óleos de Plantas/química , Solventes , Esterificação , Biocombustíveis/análise , Ácidos Graxos/química , Culinária , Catálise
4.
J Agric Food Chem ; 71(8): 3719-3731, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802590

RESUMO

Vegetable oils as hydrophobic reserves in oil dispersions (OD) provide a practical approach to halt bioactive degradation for user and environment-efficient pest management. Using biodegradable soybean oil (57%), castor oil ethoxylate (5%), calcium dodecyl benzenesulfonates as nonionic and an-ionic surfactants, bentonite (2%), and fumed silica as rheology modifiers, we created an oil-colloidal biodelivery sytem (30%) of tomato extract with homogenization. The quality-influencing parameters, such as particle size (4.5 µm), dispersibility (97%), viscosity (61 cps), and thermal stability (2 years), have been optimized in accordance with specifications. Vegetable oil was chosen for its improved bioactive stability, high smoke point (257 °C), coformulant compatibility, and as a green build-in-adjuvant by improving spreadability (20-30%), retention and penetration (20-40%). In in vitro testing, it efficiently controlled aphids with 90.5% mortalities and 68.7-71.2% under field-conditions without producing phytotoxicity. Wild tomato-derived phytochemicals can be a safe and efficient alternative to chemical pesticides when combined wisely with vegetable oils.


Assuntos
Solanum lycopersicum , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Proteção de Cultivos , Óleos de Plantas/química , Compostos Fitoquímicos
5.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785423

RESUMO

Although safe and eco-friendly botanical pesticides have been intensively promoted to combat pest attacks in agriculture, but their stability and efficacies remain an issue for their wide acceptability as sustained and effective approaches. The purpose of this work was to develop stable neem oil based nano-emulsion (NE) formulation with enhanced activity employing suitable bio-inspired adjuvant. So, Neem NEs (with and without) natural adjuvants (Cymbopogon citratus and Prosopis juliflora) in different concentrations were prepared and quality parameters dictating kinetic stability, acidity/alkalinity, viscosity, droplet size, zeta potential, surface tension, stability and compatibility were monitored using Viscometer, Zetasizer, Surface Tensiometer, High Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-emulsion biosynthesis optimization studies suggested that slightly acidic (5.9-6.5) NE is kinetically stable with no phase separation; creaming or crystallization may be due to botanical adjuvant (lemongrass oil). Findings proved that Prosopis juliflora, acted as bio-polymeric adjuvant to stabilize NE by increasing Brownian motion and weakening the attractive forces with smaller droplets (25-50 nm), low zeta potential (-30 mV) and poly-dispersive index (<0.3). Botanical adjuvant (30%) based NE with optimum viscosity (98.8cPs) can give long term storage stability and improved adhesiveness and wetting with reduced surface tension and contact angle. FT-IR analysis assured azadirachtin's stability and compatibility with adjuvant. With negligible degradation (1.42%) and higher half-life (t1/2) of 492.95 days, natural adjuvant based NE is substantially stable formulation, may be due to presence of glycosidic and phenolics compounds. Neem 20NE (with 30% adjuvant) exhibited remarkable insecticidal activity (91.24%) against whitefly (Bemisia tabaci G.) in brinjal (Solanum melongena) as evidenced by in-vivo assay. Results thus obtained suggest, bio-pesticide formulation may be used as safer alternative to chemical pesticides to minimize pesticide residues and presence of natural adjuvant may improves the stability and efficacy of biopesticides for safe crop protection in organic agriculture and Integrated Pest Management.


Assuntos
Adjuvantes Imunológicos , Controle de Insetos , Bioengenharia , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Chromatogr Sci ; 59(1): 47-54, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094317

RESUMO

A high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the accurate determination of metribuzin levels in wheat. The widespread use of this herbicide in the production of wheat is of concern and could follow as well as the need for methodology, which required simple sample preparation being needed. Validation of method was done as per single laboratory validation approach. Samples were extracted through a modified quick, cheap, effective, rugged and safe technique. Sample preparation includes extraction by acetonitrile solvent and cleans up by C18, primary secondary amine and anhydrous MgSO4 for dispersive solid-phase extraction. LC-MS/MS was calibrated at 5 calibration levels with high correlation coefficients (r2) >0.995. Limit of detection and limit of quantitation of metribuzin were 0.01 and 0.03 µg/g, respectively. The mean recovery percentages lie in the range of 87-97 with standard deviation for repeatability (RSDa) <10% at three spiking levels (0.03, 0.15 and 0.30 µg/g). Combined uncertainty (U = 0.0017) and expanded uncertainty (2U = 0.0033) were fairly consequential. The method may successfully be applied to other cereals samples for determination of metribuzin.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Triazinas/análise , Triticum/química , Herbicidas/análise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos
7.
Heliyon ; 7(3): e06557, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33855235

RESUMO

Pongamia pinnata (L.) seed oil is effective for its insecticidal and larvicidal activities. However, its low aqueous solubility, high photosensitivity, and high volatility restrict its application for the control of agricultural pests. Encapsulation can be an effective technique to overcome such hindrances. Therefore, P. pinnata oil (PO) was extracted from its seeds and analyzed for karanjin content (3.18%) by GC-MS/MS as the marker compound. Micro-encapsulation (MC) of PO was prepared by interfacial polymerization between isocyanates and polyamine and tested for insecticidal and larvicidal activities. Bioassay of the developed formulations was tested in-vitro against 2nd instar larvae of Bombyx mori (Bivoltine hybrid) and in-vivo insecticidal bio-efficacy was tested against aubergine aphid (Aphis gossypii G.) and whitefly (Bemisia tabaci G.). Various properties of micro-capsules viz., stability, size, oil content and release kinetics were examined. Average diameter of capsules (1 µm) with Zeta potential (-16 mV) was indicated by the Dynamic Light Scattering (DLS) instrument. Existence of PO in the microcapsules was confirmed by an optical microscopic study. Spectroscopic analysis revealed 87.4% of PO was encapsulated in polyurea shell. The shelf-life (T 10 ), half-life (T 50 ), and expiry-life (T 90 ) of polyurea coated capsules were 11.4, 75.3 and 250.0 h, respectively. Polyurea coated PO capsule formulation showed evidence of in-vitro toxicity against 2nd instar larvae of B. mori (LC 50 = 1.1%; LC 90 = 5.9%). The PO formulation also exhibited 67.0-71.8% and 62.4-74.8% control of aphid and whitefly population in aubergine at 4.0% dose following 7-14 days after application. The study unveiled its significance in developing controlled release herbal formulations of P. pinnata as an alternative to harmful conventional synthetic insecticides for crop protection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa