Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(9): 339, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35982360

RESUMO

Pt nanoparticles deposited on single-walled carbon nanotubes (PtSWCNTs), synthesized via the deposition precipitation (DP) method, were introduced as a substrate for immobilizing antibodies on an electrode surface and then enhancing the electrochemical sensitivity. A PtSWCNT-modified paper-based screen-printed graphene electrode was successfully developed to diagnose hepatitis C virus (HCV) infection. The hepatitis C virus core antigen (HCV-cAg) level was determined by differential pulse voltammetry (DPV) using [Fe(CN)6]3-/4- as a redox solution. In the presence of HCV-cAg, the DPV current response decreased with increasing HCV-cAg concentration. Under the optimal conditions, the change in current response provides a good linear correlation with the logarithm of HCV-cAg concentration in the range 0.05 to 1000 pg mL-1 (RSD < 5%), and the limit of detection was 0.015 pg mL-1 (or 0.71 fmol L-1). Furthermore, the proposed immunosensor has been utilized to quantify HCV-cAg in human serum samples with reliable results compared with standard immunoassays (% relative error < 10%). This sensor offers a simple, sensitive, selective, disposable, and inexpensive means for determination of HCV-cAg in human serum samples. The paper-based label-free immunosensor is versatile and feasible for clinical diagnosis.


Assuntos
Hepacivirus , Hepatite C , Imunoensaio , Nanotubos de Carbono , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Hepatite C/diagnóstico , Humanos , Imunoensaio/métodos
2.
Mikrochim Acta ; 188(2): 41, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452651

RESUMO

A non-invasive aptamer-based electrochemical biosensor using disposable screen-printed graphene electrodes (SPGEs) was developed for simple, rapid, and sensitive determination of cortisol levels. Selective detection of cortisol based on a label-free electrochemical assay was achieved by specific recognition of the cortisol DNA aptamer (CApt). The CApt was modified with streptavidin magnetic beads (MBs) before simple immobilization onto the electrode surface using a neodymium magnet. The electrochemical behavior of the aptamer-based biosensor was assessed by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) (vs Ag/AgCl). The specific binding between cortisol and CApt resulted in a decrease in charge transfer resistance (Rct) from EIS using [Fe(CN)6]3-/4- with increasing cortisol concentration. Under optimal conditions, a linear range from 0.10 to 100 ng/mL with a low detection limit (3SD/slope) of 2.1 pg/mL was obtained. Furthermore, the proposed biosensing system exhibited a satisfactory recovery in the range 97.4-109.2% with 5.7-6.6% RSD in spiked artificial human sweat. Regarding the applications of this tool, the aptamer-based biosensor has potential to be a versatile and point-of-care (POC) device for simple, sensitive, selective, disposable, and low-cost cortisol detection.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Hidrocortisona/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ferricianetos/química , Humanos , Hidrocortisona/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Fenômenos Magnéticos , Reprodutibilidade dos Testes , Suor/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa