RESUMO
We hereby report the development of a novel electrochemical method to degrade perfluorooctanoic acid (C7F15COOH, PFOA). At the center of the approach are bimetallic Pd-Ru nano-catalyst materials called IMPACT: Innovative (nano)Materials and Processes for Advanced Catalytic Technologies. IMPACT uses flavonoid-sequestered Pd-Ru, allowing the development of specialized electrodes with tunable properties to sequentially degrade PFOA in wastewater samples into a sustainable byproduct via an indirect electrochemical method. Electron transfers at RuOxHy species stabilize the Pd component of the nano-catalysts, enabling the degradation process via PFOA deprotonation, chain shortening, decarboxylation, hydrolysis, fluoride elimination, and CF2 flake-off mechanism. IMPACT enabled the observation of redox peaks at -0.26 V and 0.56 V for the first time, with accompanying reduction peaks at -0.5V and 0.29 V, respectively. These redox peaks, which correlated with the concentrations of PFOA (20, 50, 100, 200, and 400. mg L-1), were verified and confirmed using electrochemical simulations. Control experiments did not show degradation of PFOA in the absence of Pd-Ru nano-catalyst. The degradation in wastewater was obtained within 3 h with an efficiency of 98.5%. The electrochemical degradation products of PFOA were identified using High-resolution desalting paper spray mass spectrometry (DPS-MS) and collision-induced dissociation (CID) analysis. The results yielded C2F5COOH, C3F7COOH, and C6F13OH with dissociation losses of CF2O or CO2. IMPACT introduces a novel nano-catalyst with high efficiency and a reliable capability that defluorinates strong C-F bonds that are components of recalcitrant organics in myriad environmental matrices.