RESUMO
Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.
Assuntos
Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , TemperaturaRESUMO
The study of low-abundance proteins is a challenge to discovery-based proteomics. Mass spectrometry (MS) applications, such as thermal proteome profiling (TPP), face specific challenges in the detection of the whole proteome as a consequence of the use of nondenaturing extraction buffers. TPP is a powerful method for the study of protein thermal stability, but quantitative accuracy is highly dependent on consistent detection. Therefore, TPP can be limited in its amenability to study low-abundance proteins that tend to have stochastic or poor detection by MS. To address this challenge, we incorporated an affinity-purified protein complex sample at submolar concentrations as an isobaric trigger channel into a mutant TPP (mTPP) workflow to provide reproducible detection and quantitation of the low-abundance subunits of the cleavage and polyadenylation factor (CPF) complex. The inclusion of an isobaric protein complex trigger channel increased detection an average of 40× for previously detected subunits and facilitated detection of CPF subunits that were previously below the limit of detection. Importantly, these gains in CPF detection did not cause large changes in melt temperature (Tm) calculations for other unrelated proteins in the samples, with a high positive correlation between Tm estimates in samples with and without isobaric trigger channel addition. Overall, the incorporation of an affinity-purified protein complex as an isobaric trigger channel within a tandem mass tag (TMT) multiplex for mTPP experiments is an effective and reproducible way to gather thermal profiling data on proteins that are not readily detected using the original TPP or mTPP protocols.
Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Estabilidade Proteica , Fluxo de TrabalhoRESUMO
Deleted in Liver Cancer-1 (DLC1), a member of the RhoGAP family of proteins, functions as a tumor suppressor in several cancers including breast cancer. However, its clinical relevance is unclear in breast cancer. In this study, expression of DLC1 was correlated with prognosis using publicly available breast cancer gene expression datasets and quantitative Reverse Transcription PCR in cohorts of Estrogen Receptor-positive (ER+) breast cancer. Low expression of DLC1 correlates with poor prognosis in patients with ER+ breast cancer with further decrease in metastatic lesions. The Cancer Genome Atlas (TCGA) data showed that down regulation of DLC1 is not due to methylation or mutations. To seek further insights in understanding the role of DLC1 in ER+ breast cancer, we stably overexpressed DLC1-full-length (DLC1-FL) in T-47D breast cancer cells; this inhibited cell colony formation significantly in vitro compared to its control counterpart. Label-free global proteomic and TiO2 phosphopeptide enrichment assays (ProteomeXchange identifier PXD008220) showed that 205 and 122 phosphopeptides were unique to DLC1-FL cells and T-47D-control cells, respectively, whereas 6,726 were quantified by phosphoproteomics analysis in both conditions. The top three significant clusters of differentially phosphopeptides identified by DAVID pathway analysis represent cell-cell adhesion, mRNA processing and splicing, and transcription regulation. Phosphoproteomics analysis documented an inverse relation between DLC1 expression and several phosphopeptides including epithelial cell transforming sequence 2 (ECT2). Decreased phosphorylation of ECT2 at the residue T359, critical for its active conformational change, was validated by western blot. In addition, the ECT2 T359-containing phosphopeptide was detected in both basal and luminal patient-derived breast cancers breast cancer phosphoproteomics data on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Assay portal. Together, for the first time, this implicates ECT2 phosphorylation in breast cancer, which has been proposed as a therapeutic target in lung cancer. In conclusion, this data suggests that low expression of DLC1 is associated with poor prognosis. Targeting ECT2 phosphopeptides could provide a promising mechanism for controlling poor prognosis seen in DLC1low ER+ breast cancer.