Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(9): 1034-1040, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-32933639

RESUMO

OBJECTIVE: To study the effect and related signaling pathways of ginsenoside Rb1 in the treatment of coronary artery lesion (CAL) in a mouse model of Kawasaki disease (KD). METHODS: BALB/c mice were randomly divided into a control group, a model group, an aspirin group, a low-dose ginsenoside Rb1 group (50 mg/kg), and a high-dose ginsenoside Rb1 group (100 mg/kg), with 12 mice in each group. All mice except those in the control group were given intermittent intraperitoneal injection of 10% bovine serum albumin to establish a mouse model of KD. The mice in the aspirin group, the low-dose ginsenoside Rb1 group, and the high-dose ginsenoside Rb1 group were given the corresponding drug by gavage for 20 days after modeling. Hematoxylin and eosin staining was used to observe the pathological changes of coronary artery tissue. ELISA was used to measure the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in serum and coronary artery tissue. Western blot was used to measure the relative expression levels of proteins involved in the regulation of the AMPK/mTOR autophagy signaling pathway and the PI3K/Akt oxidative stress signaling pathway in coronary artery tissue. RESULTS: The observation of pathological sections showed that compared with the model group, the high-dose ginsenoside Rb1 group had significant improvement in the symptoms of vascular wall thickening, intimal edema, fiber rupture, and inflammatory infiltration of endothelial cells. Compared with the control group, the model and low-dose ginsenoside Rb1 groups had significant increases in the levels of TNF-α, IL-6, and IL-1ß in serum and coronary artery tissue (P<0.05); the model group had significant increases in the expression levels of P-AMPK/AMPK, P-mTOR/mTOR, and P-P70S6/P70S6 in coronary artery tissue (P<0.05) and significant reductions in the expression levels of P-PI3K/PI3K, P-AKT/AKT, and P-GSK-3ß/GSK-3ß in coronary artery tissue (P<0.05). Compared with the model group, the aspirin group and the high-dose ginsenoside Rb1 group had significant reductions in the levels of TNF-α, IL-6, and IL-1ß (P<0.05); the low- and high-dose ginsenoside Rb1 groups had significant reductions in the expression levels of P-AMPK/AMPK, P-mTOR/mTOR, and P-P70S6/P70S6 (P<0.05) in a dose-dependent manner between the two groups (P<0.05); the low-dose ginsenoside Rb1 group had no significant change in the expression level of P-PI3K/PI3K (P>0.05) and had significant increases in the expression levels of P-AKT/AKT and P-GSK-3ß/GSK-3ß (P<0.05), while the high-dose ginsenoside Rb1 group had significant increases in the relative protein expression levels of the above three proteins (P<0.05). Compared with the low-dose ginsenoside Rb1 group, the aspirin group and the high-dose ginsenoside Rb1 group had significant reductions in the levels of TNF-α, IL-6, and IL-1ß (P<0.05); the high-dose ginsenoside Rb1 group had significant increases in the expression levels of P-PI3K/PI3K and P-AKT/AKT (P<0.05). CONCLUSIONS: Ginsenoside Rb1 can effectively alleviate CAL in a mouse model of KD in a dose-dependent manner, possibly by regulating the AMPK/mTOR/P70S6 autophagy signaling pathway to inhibit CAL inflammation and regulating the PI3K/AKT/GSK-3ß oxidative stress signaling pathway to exert a biological activity of protection against coronary artery endothelial cell injury.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Animais , Vasos Coronários , Células Endoteliais , Ginsenosídeos , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
2.
Plant Physiol ; 173(2): 1211-1225, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27932421

RESUMO

In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Óleos de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Polinização , Sementes/genética , Fatores de Transcrição/genética
3.
Biochem Biophys Res Commun ; 486(1): 124-129, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28283390

RESUMO

Previous studies have shown that DNA topoisomerase Iα (AtTOP1α) has specific developmental functions during growth and development in Arabidopsis thaliana. However, little is known about the roles of DNA topoisomerases in the closely related and commercially important plant, rapeseed (Brassica napus). Here, the full-length BnTOP1α-1 coding sequence was cloned from the A2 subgenome of the Brassica napus inbred line L111. We determine that all BnTOP1α paralogs showed differing patterns of expression in different organs of L111, and that when expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnTOP1α-1 localized to the nucleus. We further showed that ectopic expression of BnTOP1α-1 in the A. thaliana top1α-7 mutant fully complemented the early flowering phenotype of the mutant. Moreover, altered expression levels in top1α-7 seedlings of several key genes controlling flowering time were restored to wild type levels by ectopic expression of BnTOP1α-1. These results provide valuable insights into the roles of rapeseed DNA topoisomerases in flowering time, and provide a promising target for genetic manipulation of this commercially significant process in rapeseed.


Assuntos
Arabidopsis/genética , Brassica napus/genética , DNA Topoisomerases/genética , Flores/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Brassica napus/enzimologia , Núcleo Celular/enzimologia , Núcleo Celular/genética , DNA Topoisomerases/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Nicotiana/enzimologia , Nicotiana/genética
4.
Biochem Biophys Res Commun ; 485(2): 360-365, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28216162

RESUMO

GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Tricomas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética , Tricomas/metabolismo
5.
Plant Sci ; 254: 60-69, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27964785

RESUMO

TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Desenvolvimento Vegetal/genética , Setaria (Planta)/genética , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Filogenia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Setaria (Planta)/crescimento & desenvolvimento , Estresse Fisiológico , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Plant Sci ; 8: 226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270825

RESUMO

The MYB family of transcription factors is important in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses in Arabidopsis. However, their role in regulating fatty acid accumulation in seeds is still largely unclear. Here, we found that MYB76, localized in the nucleus, was predominantly expressed in developing seeds during maturation. The myb76 mutation caused a significant increase in the amounts of total fatty acids and several major fatty acid compositions in mature seeds, suggesting that MYB76 functioned as an important repressor during seed oil biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed remarkable alteration of numerous genes involved in photosynthesis, fatty acid biosynthesis, modification, and degradation, and oil body formation in myb76 seeds at 12 days after pollination. These results help us to understand the novel function of MYB76 and provide new insights into the regulatory network of MYB transcriptional factors controlling seed oil accumulation in Arabidopsis.

7.
Front Plant Sci ; 8: 1319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791041

RESUMO

Previous studies have shown that several ACYL-ACYL CARRIER PROTEIN DESATURASE (AtAAD) members in Arabidopsis thaliana are responsible for oleic acid (C18:1) biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially important plant, Brassica napus. Here, we found that AtAAD5 was predominantly and exclusively expressed in developing embryos at the whole seed developmental stages. The aad5 mutation caused a significant decrease in the amounts of oil and C18:1, and a considerable increase in the content of stearic acid (C18:0) in mature seeds, suggesting that AtAAD5 functioned as an important facilitator of seed oil biosynthesis. We also cloned the full-length coding sequence of BnAAD5-1 from the A3 subgenome of the B. napus inbred line L111. We showed that ectopic expression of BnAAD5-1 in the A. thaliana aad5-2 mutant fully complemented the phenotypes of the mutant, such as lower oil content and altered contents of C18:0 and C18:1. These results help us to better understand the functions of AAD members in A. thaliana and B. napus and provide a promising target for genetic manipulation of B. napus.

8.
Plant Physiol Biochem ; 108: 63-70, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27415132

RESUMO

Basic helix-loop-helix transcription factors (TFs), namely MYC2, MYC3, and MYC4, interact with Jasmonate Zim-domain proteins and are their direct targets. These TFs have been shown to function synergistically to control Arabidopsis growth and development. Our results showed similar MYC2, MYC3, and MYC4 expression patterns during Arabidopsis seed development, which remained relatively high during seed mid-maturation. MYC2, MYC3, and MYC4 acted redundantly in seed size, weight control, and in regulating seed storage protein accumulation. Triple mutants produced the largest seeds and single and double mutants' seeds were much larger than those of wild type. The weight of triple mutants' seeds was significantly higher than that of wild-type seeds, which was accompanied by an increase in seed storage protein contents. Triple mutants' seeds presented a marked decrease in 2S amounts relative to those in wild-type seeds. Liquid chromatography tandem mass spectra sequencing results indicated that both the relative abundance and the peptide number of CRA1 and CRU3 were greatly increased in triple mutants compared to wild type. The expression of 2S1-2S5 decreased and that of CRA1 and CRU3 increased in triple mutants relative to those in wild types during seed development, which might have contributed to the low 2S and high 12S contents in triple mutants. Our results contribute to understanding the function of MYC2, MYC3, and MYC4 on seed development, and provide promising targets for genetic manipulations of protein-producing crops to improve the quantity and quality of seed storage proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sementes/metabolismo , Transativadores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica de Plantas , Mutação , Sementes/genética , Sementes/crescimento & desenvolvimento , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa