Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(3): e0181922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815785

RESUMO

Human papillomaviruses (HPV) are small DNA viruses associated with cervical cancer, warts, and other epithelial tumors. Structural studies have shown that the HPV capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers in a T=7 icosahedral lattice, coassembling with substoichiometric amounts of the minor capsid protein, L2. However, the residues involved in the coassembly of L1 and L2 remain undefined due to the lack of structure information. Here, we investigated the solvent accessibility surfaces (SASs) of the central cavity residues of the HPV16 L1 pentamer in the crystal structure because those internal exposed residues might mediate the association with L2. Twenty residues in L1 protein were selected to be analyzed, with four residues in the lumen of the L1 pentamer identified as important: F256, R315, Q317, and T340. Mutations to these four residues reduced the PsV (pseudovirus) infection capacity in 293FT cells, and mutations to R315, Q317, and T340 substantially perturb L2 from coassembling into L1 capsid. Compared with wild-type (WT) PsVs, these mutant PsVs also have a reduced ability to become internalized into host cells. Finally, we identified a stretch of negatively charged residues on L2 (amino acids [aa] 337 to 340 [EEIE]), mutations to which completely abrogate L2 assembly into L1 capsid and subsequently impair the endocytosis and infectivity of HPV16 PsVs. These findings shed light on the elusive coassembly between HPV L1 and L2. IMPORTANCE Over 200 types of HPV have been isolated, with several high-risk types correlated with the occurrence of cervical cancer. The HPV major capsid protein, L1, assembles into a T=7 icosahedral viral shell, and associates with the minor capsid protein, L2, which plays a critical role in the HPV life cycle. Despite the important role of the L2 protein, its structure and coassembly with L1 remain elusive. In this study, we analyzed the amino acid residues at the proposed interface between L1 and L2. Certain mutations at these sites decreased the amount of L2 protein assembled into the capsid, which, in turn, led to a decrease in viral infectivity. Knowledge about these residues and the coassembly of L1 and L2 could help to expand our understanding of HPV biology and aid in the development of countermeasures against a wide range of HPV types by targeting the L2 protein.


Assuntos
Proteínas do Capsídeo , Papillomavirus Humano 16 , Feminino , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos/genética , Mutação , Linhagem Celular , Estrutura Terciária de Proteína/genética , Modelos Moleculares
2.
Sci Bull (Beijing) ; 69(4): 512-525, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38160175

RESUMO

In vaccine development, broadly or cross-type neutralizing antibodies (bnAbs or cnAbs) are frequently targeted to enhance protection. Utilizing immunodominant antibodies could help fine-tune vaccine immunogenicity and augment the precision of immunization strategies. However, the methodologies to capitalize on the attributes of bnAbs in vaccine design have not been clearly elucidated. In this study, we discovered a cross-type neutralizing monoclonal antibody, 13H5, against human papillomavirus 6 (HPV6) and HPV11. This nAb exhibited a marked preference for HPV6, demonstrating superior binding activity to virus-like particles (VLPs) and significantly higher prevalence in anti-HPV6 human serum as compared to HPV11 antiserum (90% vs. 31%). Through co-crystal structural analysis of the HPV6 L1 pentamer:13H5 complex, we delineated the epitope as spanning four segments of amino acids (Phe42-Ala47, Gly172-Asp173, Glu255-Val275, and Val337-Tyr351) on the L1 surface loops. Further interaction analysis and site-directed mutagenesis revealed that the Ser341 residue in the HPV6 HI loop plays a critical role in the interaction between 13H5 and L1. Substituting Ser341 with alanine, which is the residue type present in HPV11 L1, almost completely abolished binding activity to 13H5. By swapping amino acids in the HPV11 HI loop with corresponding residues in HPV6 L1 (Ser341, Thr338, and Thr339), we engineered chimeric HPV11-6HI VLPs. Remarkably, the chimeric HPV11-6HI VLPs shifted the high immunodominance of 13H5 from HPV6 to the engineered VLPs and yielded comparable neutralization titers for both HPV6 and HPV11 in mice and non-human primates. This approach paves the way for the design of broadly protective vaccines from antibodies within the main immunization reservoir.


Assuntos
Vacinas contra Papillomavirus , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo/genética , Anticorpos Antivirais , Papillomavirus Humano 6 , Imunização , Aminoácidos
3.
Sci China Life Sci ; 66(4): 679-710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36469218

RESUMO

Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.


Assuntos
Doenças Transmissíveis Emergentes , Doenças Transmissíveis , Infecções por Papillomavirus , Humanos , Vacinas Sintéticas , Vacinas Atenuadas , Vacinas de Subunidades Antigênicas , Infecções por Papillomavirus/prevenção & controle
4.
NPJ Vaccines ; 7(1): 134, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316367

RESUMO

In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.

5.
Vaccine ; 40(42): 6141-6152, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36117002

RESUMO

Persistent infection of high-risk human papillomavirus (HPV) is a leading cause of some cancers, including cervical cancer. However, with over 20 carcinogenic HPV types, it is difficult to design a multivalent vaccine that can offer complete protection. Here, we describe the design and optimization of a HPV51/69/26 triple-type chimeric virus-like particle (VLP) for vaccine development. Using E. coli and a serial N-terminal truncation strategy, we created double- and triple-type chimeric VLPs through loop-swapping at equivalent surface loops. The lead candidate, H69-51BC-26FG, conferred similar particulate properties as that of its parental VLPs and comparable immunogenicity against HPV51, -69 and -26. When produced in a GMP-like facility, these H69-51BC-26FG VLPs were verified to have excellent qualities for the development of a multivalent HPV vaccine. This study showcases an amenable way to create a single VLP using type-specific epitope clustering for the design of a triple-type vaccine.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Epitopos , Escherichia coli/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/genética , Vacinas contra Papillomavirus/genética , Vacinas Combinadas , Vacinas de Partículas Semelhantes a Vírus/genética
6.
Vaccines (Basel) ; 8(1)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244935

RESUMO

Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.

7.
Nat Commun ; 11(1): 2841, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503989

RESUMO

The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.


Assuntos
Proteínas do Capsídeo/imunologia , Neoplasias/terapia , Papillomaviridae/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Desenho de Fármacos , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Mutação , Neoplasias/virologia , Testes de Neutralização , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
Emerg Microbes Infect ; 8(1): 1721-1733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769733

RESUMO

Human papillomavirus type 6 (HPV6) is the major etiologic agent of genital warts and recurrent respiratory papillomatosis. Although the commercial HPV vaccines cover HPV6, the neutralization sites and mode for HPV6 are poorly understood. Here, we identify the HPV6 neutralization sites and discriminate the inhibition of virus attachment and entry by three potent neutralizing antibodies (nAbs), 5D3, 17D5, and 15F7. Mutagenesis assays showed that these nAbs predominantly target surface loops BC, DE, and FG of HPV6 L1. Cryo-EM structures of the HPV6 pseudovirus (PsV) and its immune complexes revealed three distinct binding modalities - full-occupation-bound to capsid, top-center-bound-, and top-rim-bound to pentamers - and illustrated a structural atlas for three classes of antibody-bound footprints that are located at center-distal ring, center, and center-proximal ring of pentamer surface for 5D3, 17D5, and 15F7, respectively. Two modes of neutralization were identified: mAb 5D3 and 17D5 block HPV PsV from attaching to the extracellular matrix (ECM) and the cell surface, whereas 15F7 allows PsV attachment but prohibits PsV from entering the cell. These findings highlight three neutralization sites of HPV6 L1 and outline two antibody-mediated neutralization mechanisms against HPV6, which will be relevant for HPV virology and antiviral inhibitor design. HighlightsMajor neutralization sites of HPV6 were mapped on the pseudovirus cryo-EM structuremAb 15F7 binds HPV6 capsid with a novel top-rim binding modality and confers a post-attachment neutralizationmAb 17D5 binds capsid in top-centre manner but unexpectedly prevents virus from attachment to cell surface.


Assuntos
Papillomavirus Humano 6/fisiologia , Infecções por Papillomavirus/virologia , Ligação Viral , Internalização do Vírus , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Papillomavirus Humano 6/genética , Papillomavirus Humano 6/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Papillomavirus/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa