Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Transp Res Part C Emerg Technol ; 151: 104118, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37069936

RESUMO

In the aftermath of a disruptive event like the onset of the COVID-19 pandemic, it is important for policymakers to quickly understand how people are changing their behavior and their goals in response to the event. Choice modeling is often applied to infer the relationship between preference and behavior, but it assumes that the underlying relationship is stationary: that decisions are drawn from the same model over time. However, when observed decisions outcomes are non-stationary in time because, for example, the agent is changing their behavioral policy over time, existing methods fail to recognize the intent behind these changes. To this end, we introduce a non-parametric sequentially-valid online statistical hypothesis test to identify entities in the urban environment that ride-sourcing drivers increasingly sought out or avoided over the initial months of the COVID-19 pandemic. We recover concrete and intuitive behavioral patterns across drivers to demonstrate that this procedure can be used to detect behavioral trends as they are emerging.

2.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440742

RESUMO

Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management.

3.
Accid Anal Prev ; 183: 106966, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36696743

RESUMO

Transportation agencies post and enforce reduced speed limits in work zones to ensure work zone safety, since traffic speed is found to be associated with work zone crash risks. However, prior findings on the relationship between speed and crash rate in work zones are inconsistent. This may be attributed to the methods of statistical associations between traffic speed and crash risks that do not necessarily discover true causal relations. In fact, work zone presence could lead to the reduction of actual traffic speed that influences crash risks, where it may also directly impose effects on crash risks as a result of work zone configurations. The actual traffic speed (not posted speed limit) is also known as a "mediator" where work zones can indirectly impact the crash risks. It is challenging to rigorously separate the causal effect of traffic speed on work zone crash risk from that directly caused by work zones. The underlying causal relation could help to determine what reduced post speed limit (with enforcement) is necessary to ensure work zone safety under the most desired "actual traffic speed". This study proposes to use the sequential g-estimation and the regression discontinuity design to estimate the controlled direct effect of traffic speed on work zone crashes. Two research gaps are identified and filled: inaccurate inferences of the effect of reduced speed limit in work zones as a result of ignoring (1) potential post-treatment bias since traffic speed is a mediator; and (2) potential confounding bias caused by unobservable roadway characteristics. The proposed methodology was applied to 4008 work zones in Pennsylvania from 2015 to 2017, and the results were validated through a series of robustness tests. The results indicate that the direct causal effect of the presence of work zones on crash risk is significantly positive when the traffic speed is relatively low (i.e., lower than 55 mph in this case study), while traffic speed has a positive causal effect on crash occurrences when the actual traffic speed is high (i.e., greater or equal to 55 mph). It suggests that strictly enforcing reduced posted speed limits in work zones is particularly effective when the actual traffic speed is greater than 55 mph. This is particularly true on roadways with high traffic volume (i.e., AADT > 20,000 vehicles per day), long, and daytime work zones (i.e., > 3000 m). On the other hand, the effect of enforcing reduced speed on work zone safety is unclear when the actual speed is already low. In this case, improving work zone configurations and driving behaviors may be more effective in reducing crash risks.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Pennsylvania , Segurança , Meios de Transporte
4.
Accid Anal Prev ; 177: 106811, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099682

RESUMO

The increasing number of work zone crashes has been a significant concern for road users, transportation agencies, and researchers. Crashes can be caused by work zones, and this effect changes across different work zone configurations, traffic volumes, roadway functional classifications, and weather conditions. This is typically represented by Crash Modification Functions (CMFunctions). However, current methods for developing work zone CMFunctions have two major limitations: (1) They focus on analyzing statistical associations and fail to mitigate the confounding bias due to possible unobservable roadway characteristics; and (2) They cannot address CMFunctions of multiple variables simultaneously, such as weather and traffic conditions, since they are represented using mixed data types (continuous and categorical) that could potentially affect the causal effect of work zones on crashes. In this study, we develop a method that utilizes causal forest with fixed-effect modeling to mitigate the confounding bias while identifying CMFunctions conditioning on various environmental characteristics, including work zone configurations, traffic volume, roadway functional classification, and weather conditions. The developed method was applied to 3378 work zones that occurred in Pennsylvania between 2015 and 2017. The results were validated via a series of robustness tests. The validations demonstrate that this method can mitigate the confounding bias and identify CMFunctions of multiple variables. The results also show that the causal effect of a work zone on crash occurrence is significantly positive (p<0.05) on roadways with high traffic volumes (e.g., > 20,000 vehicles per day) and on medium length (e.g., 2000 to 5000 m) work zones. It appears that having medium-long (e.g., between 6000 and 8000 m) work zones or long duration (e.g., longer than 4 h) work zones do not necessarily lead to extra crashes.


Assuntos
Acidentes de Trânsito , Tempo (Meteorologia) , Acidentes de Trânsito/prevenção & controle , Humanos , Pennsylvania , Segurança
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa