RESUMO
The neuropeptide B/W signaling system is composed of neuropeptide B (NPB), neuropeptide W (NPW), and two cognate receptors, NPBWR1 and NPBWR2, which are involved in diverse physiological processes, including the central regulation of neuroendocrine axes in vertebrates. The components of this signaling system are not well conserved during vertebrate evolution, implicating its functional diversity. The present study characterized the ricefield eel neuropeptide B/W system, generated a specific antiserum against the neuropeptide B/W receptor, and examined the potential roles of the system in the regulation of adenohypophysial functions. The ricefield eel genome contains npba, npbb, and npbwr2b but lacks the npw, npbwr1, and npbwr2a genes. The loss of npw and npbwr1 probably occurred at the base of ray-finned fish radiation and that of npbwr2a species specifically in ray-finned fish. Npba and npbb genes are produced through whole-genome duplication (WGD) in ray-finned fish. The ricefield eel npba was expressed in the brain and some peripheral tissues, while npbb was predominantly expressed in the brain. The ricefield eel npbwr2b was also expressed in the brain and in some peripheral tissues, such as the pituitary, gonad, heart, and eye. Immunoreactive Npbwr2b was shown to be localized to Lh and Fsh cells but not to Gh or Prl cells in the pituitary of ricefield eels. Npba upregulated the expression of fshb and cga but not lhb mRNA in pituitary fragments of ricefield eels cultured in vitro. The results of the present study suggest that the NPB system of ricefield eels may be involved in the neuroendocrine regulation of reproduction.
Assuntos
Enguias , Neuropeptídeos , Animais , Enguias/genética , Enguias/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Gonadotropinas/metabolismo , Receptores de Neuropeptídeos/genéticaRESUMO
Foxo1, a member of Foxo transcription factor family, is involved in a number of physiological processes including metabolism, cell cycle progression, aging, and apoptosis. In the ovarian granulosa cell of mouse, Foxo1 is implicated to inhibit the expression of Cyp19a1, a gene encoding the aromatase that converts androgens into estrogens. Currently, the information about the expression and physiological relevance of Foxo1 homologues in the ovary of teleosts is scarce. In the present study, cDNAs encoding two forms of Foxo1, Foxo1a and Foxo1b, were isolated from the orange-spotted grouper. Phylogenetic analysis indicated that the orange-spotted groupers Foxo1a and Foxo1b were closely related to the counterparts of the ricefield eel. RT-PCR analysis showed that the orange-spotted groupers foxo1a and foxo1b were expressed in a wide range of tissues, with high levels detected in the brain regions, liver, and intestine. Quantitative real-time PCR analysis showed similar expression profiles for cyp19a1a, foxo1a, and foxo1b in the ovary during development from the primary growth to mature stages, with peak values detected at the vitellogenic stage. In situ hybridization detected mRNA of foxo1a, foxo1b, and cyp19a1a in granulosa cells surrounding vitellogenic oocytes. In vitro transfection showed that both Foxo1a and Foxo1b upregulated the orange-spotted grouper cyp19a1a promoter activities, possibly through the conserved Foxo binding site. Collectively, these results suggest that both Foxo1a and Foxo1b may be involved in the regulation of the ovarian functions in the orange-spotted grouper and the physiological roles of Foxo1 homologues in the ovary may be diversified in vertebrates.