Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cancer Cell Int ; 20: 461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982583

RESUMO

BACKGROUND: Large-scale initiatives like The Cancer Genome Atlas (TCGA) performed genomics studies on predominantly Caucasian kidney cancer. In this study, we aimed to investigate genomics of Chinese clear cell renal cell carcinoma (ccRCC). METHODS: We performed whole-transcriptomic sequencing on 55 tumor tissues and 11 matched normal tissues from Chinese ccRCC patients. We systematically analyzed the data from our cohort and comprehensively compared with the TCGA ccRCC cohort. RESULTS: It found that PBRM1 mutates with a frequency of 11% in our cohort, much lower than that in TCGA Caucasians (33%). Besides, 31 gene fusions including 5 recurrent ones, that associated with apoptosis, tumor suppression and metastasis were identified. We classified our cohort into three classes by gene expression. Class 1 shows significantly elevated gene expression in the VEGF pathway, while Class 3 has comparably suppressed expression of this pathway. Class 2 is characterized by increased expression of extracellular matrix organization genes and is associated with high-grade tumors. Applying the classification to TCGA ccRCC patients revealed better distinction of tumor prognosis than reported classifications. Class 2 shows worst survival and Class 3 is a rare subtype ccRCC in the TCGA cohort. Furthermore, computational analysis on the immune microenvironment of ccRCC identified immune-active and tolerant tumors with significant increased macrophages and depleted CD4 positive T-cells, thus some patients may benefit from immunotherapies. CONCLUSION: In summary, results presented in this study shed light into distinct genomic expression profiles in Chinese population, modified the stratification patterns by new molecular classification, and gave practical guidelines on clinical treatment of ccRCC patients.

2.
Nature ; 463(7279): 311-7, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20010809

RESUMO

Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.


Assuntos
Genoma/genética , Genômica , Ursidae/genética , Algoritmos , Animais , China , Sequência Conservada/genética , Mapeamento de Sequências Contíguas , Dieta/veterinária , Cães , Evolução Molecular , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Heterozigoto , Humanos , Família Multigênica/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia/genética , Ursidae/classificação , Ursidae/fisiologia
3.
Nature ; 452(7190): 991-6, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18432245

RESUMO

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.


Assuntos
Carica/genética , Genoma de Planta/genética , Arabidopsis/genética , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Genes de Plantas/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Clima Tropical
4.
Genome Res ; 20(2): 265-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20019144

RESUMO

Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.


Assuntos
Genoma Humano , Projeto Genoma Humano , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Povo Asiático/genética , População Negra/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/economia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Alinhamento de Sequência/economia , Análise de Sequência de DNA/economia
5.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37214825

RESUMO

Tumor angiogenesis is a cancer hallmark, and its therapeutic inhibition has provided meaningful, albeit limited, clinical benefit. While anti-angiogenesis inhibitors deprive the tumor of oxygen and essential nutrients, cancer cells activate metabolic adaptations to diminish therapeutic response. Despite these adaptations, angiogenesis inhibition incurs extensive metabolic stress, prompting us to consider such metabolic stress as an induced vulnerability to therapies targeting cancer metabolism. Metabolomic profiling of angiogenesis-inhibited intracranial xenografts showed universal decrease in tricarboxylic acid cycle intermediates, corroborating a state of anaplerotic nutrient deficit or stress. Accordingly, we show strong synergy between angiogenesis inhibitors (Avastin, Tivozanib) and inhibitors of glycolysis or oxidative phosphorylation through exacerbation of anaplerotic nutrient stress in intracranial orthotopic xenografted gliomas. Our findings were recapitulated in GBM xenografts that do not have genetically predisposed metabolic vulnerabilities at baseline. Thus, our findings cement the central importance of the tricarboxylic acid cycle as the nexus of metabolic vulnerabilities and suggest clinical path hypothesis combining angiogenesis inhibitors with pharmacological cancer interventions targeting tumor metabolism for GBM tumors.

6.
Cancer Res Commun ; 2(5): 353-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36875715

RESUMO

Tumor biology is determined not only by immortal cancer cells but also by the tumor microenvironment consisting of noncancerous cells and extracellular matrix, together they dictate the pathogenesis and response to treatments. Tumor purity is the proportion of cancer cells in a tumor. It is a fundamental property of cancer and is associated with many clinical features and outcomes. Here we report the first systematic study of tumor purity in patient-derived xenograft (PDX) and syngeneic tumor models using next-generation sequencing data from >9,000 tumors. We found that tumor purity in PDX models is cancer specific and mimics patient tumors, with variation in stromal content and immune infiltration influenced by immune systems of host mice. After the initial engraftment, human stroma in a PDX tumor is quickly replaced by mouse stroma, and tumor purity then stays stable in subsequent transplantations and increases only slightly by passage. Similarly, in syngeneic mouse cancer cell line models, tumor purity also turns out to be an intrinsic property with model and cancer specificities. Computational and pathology analysis confirmed the impact on tumor purity by the diverse stromal and immune profiles. Our study deepens the understanding of mouse tumor models, which will enable their better and novel uses in developing cancer therapeutics, especially ones targeting tumor microenvironment. Significance: PDX models are an ideal experimental system to study tumor purity because of its distinct separation of human tumor cells and mouse stromal and immune cells. This study provides a comprehensive view of tumor purity in 27 cancers in PDX models. It also investigates tumor purity in 19 syngeneic models based on unambiguously identified somatic mutations. It will facilitate tumor microenvironment research and drug development in mouse tumor models.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/genética , Sistema Imunitário , Microambiente Tumoral
7.
Nat Commun ; 13(1): 1640, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347147

RESUMO

Studies have revealed key genomic aberrations in pediatric acute myeloid leukemia (AML) based on Western populations. It is unknown to what extent the current genomic findings represent populations with different ethnic backgrounds. Here we present the genomic landscape of driver alterations of Chinese pediatric AML and discover previously undescribed genomic aberrations, including the XPO1-TNRC18 fusion. Comprehensively comparing between the Chinese and Western AML cohorts reveal a substantially distinct genomic alteration profile. For example, Chinese AML patients more commonly exhibit mutations in KIT and CSF3R, and less frequently mutated of genes in the RAS signaling pathway. These differences in mutation frequencies lead to the detection of previously uncharacterized co-occurring mutation pairs. Importantly, the distinct driver profile is clinical relevant. We propose a refined prognosis risk classification model which better reflected the adverse event risk for Chinese AML patients. These results emphasize the importance of genetic background in precision medicine.


Assuntos
Leucemia Mieloide Aguda , Criança , China , Genômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Taxa de Mutação
8.
J Vis Exp ; (171)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028430

RESUMO

Patient-derived tumor xenografts (PDXs) are considered the most predictive preclinical models, largely believed to be driven by cancer stem cells (CSC) for conventional cancer drug evaluation. A large library of PDXs is reflective of the diversity of patient populations and thus enables population based preclinical trials ("Phase II-like mouse clinical trials"); however, PDX have practical limitations of low throughput, high costs and long duration. Tumor organoids, also being patient-derived CSC-driven models, can be considered as the in vitro equivalent of PDX, overcoming certain PDX limitations for dealing with large libraries of organoids or compounds. This study describes a method to create PDX-derived organoids (PDXO), thus resulting in paired models for in vitro and in vivo pharmacology research. Subcutaneously-transplanted PDX-CR2110 tumors were collected from tumor-bearing mice when the tumors reached 200-800 mm3, per an approved autopsy procedure, followed by removal of the adjacent non-tumor tissues and dissociation into small tumor fragments. The small tumor fragments were washed and passed through a 100 µm cell strainer to remove the debris. Cell clusters were collected and suspended in basement membrane extract (BME) solution and plated in a 6-well plate as a solid droplet with surrounding liquid media for growth in a CO2 incubator. Organoid growth was monitored twice weekly under light microscopy and recorded by photography, followed by liquid medium change 2 or 3 times a week. The grown organoids were further passaged (7 days later) at a 1:2 ratio by disrupting the BME embedded organoids using mechanical shearing, aided by addition of trypsin and the addition of 10 µM Y-27632. Organoids were cryopreserved in cryo-tubes for long-term storage, after release from BME by centrifugation, and also sampled (e.g., DNA, RNA and FFPE block) for further characterization.


Assuntos
Antineoplásicos , Neoplasias , Organoides , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Farmacologia
9.
NAR Genom Bioinform ; 2(3): lqaa060, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575611

RESUMO

Misidentification and contamination of biobank samples (e.g. cell lines) have plagued biomedical research. Short tandem repeat (STR) and single-nucleotide polymorphism assays are widely used to authenticate biosamples and detect contamination, but with insufficient sensitivity at 5-10% and 3-5%, respectively. Here, we describe a deep NGS-based method with significantly higher sensitivity (≤1%). It can be used to authenticate human and mouse cell lines, xenografts and organoids. It can also reliably identify and quantify contamination of human cell line samples, contaminated with only small amount of other cell samples; detect and quantify species-specific components in human-mouse mixed samples (e.g. xenografts) with 0.1% sensitivity; detect mycoplasma contamination; and infer population structure and gender of human samples. By adopting DNA barcoding technology, we are able to profile 100-200 samples in a single run at per-sample cost comparable to conventional STR assays, providing a truly high-throughput and low-cost assay for building and maintaining high-quality biobanks.

10.
Oncotarget ; 11(44): 3933-3942, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216820

RESUMO

Treatment of infiltrative glioma presents a number of unique challenges due to poor penetration of typical chemotherapeutic agents into the infiltrating edge of tumors. The current chemotherapy options include nitrosoureas (e.g., lomustine) and the imidazotetrazine-class monofunctional DNA alkylating agent, temozolomide (TMZ). Both classes of drugs alkylate DNA and have relatively unrestricted passage from blood into brain where infiltrative tumor cells reside. Recent research indicates that secondary mutations detected in the RB and AKT-mTOR signaling pathways are linked to characteristics of recurrent tumors specific to TMZ-treated patients. It has been hypothesized that a decrease in rate of secondary mutations may result in delay of tumor recurrence. To that end, this study was designed to test viability of decreasing secondary mutations by disrupting the cell division cycle using eflornithine, a specific inhibitor of ornithine decarboxylase. U87MG glioblastoma cell line characterized by chromosomal abnormalities commonly attributed to primary cancers was used as a model for this study. The cells were subjected to TMZ treatment for 3 days followed by eflornithine (DFMO) treatment for 4 or 11 days. It was shown that TMZ significantly increased the frequency of mutations in U87MG glioblastoma cells while DFMO-treated cells showed mutation frequency statistically similar to that of the untreated cells on the respective treatment days. The findings of this study provide evidence to support the hypothesis that DFMO may inhibit progression of DNA mutations caused by alkylating chemotherapy agents, such as TMZ.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa