Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(4): 195, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478128

RESUMO

Transition metal carbides modified by Au nanoparticles (Au/Ti3C2) were synthesized and developed as a colorimetric sensor for the determination of H2O2 and ampicillin. The surface electrical properties of Ti3C2 were changed, and Au nanoparticles (AuNPs) and gold growth solution were synthesized simultaneously. Au/Ti3C2 was obtained by seed growth method with AuNPs modified on the surface of transition metal carbides, nitrides or carbon-nitrides (Ti3C2 MXenes). The synthesized AuNPs and Ti3C2 had no peroxidase-like activity, but Au/Ti3C2 had. The peroxidase catalytic mechanism was due to electron transfer. The peroxidase activity of Au/Ti3C2 can be utilized for the determination of H2O2. The linear range of Au/Ti3C2 for H2O2 was 1-60 µM, and the detection limit was 0.12 µM (S/N = 3). A colometric sensor for ampicillin detection based on Au/Ti3C2 was further constructed since S in ampicillin formed an Au-S bond with Au/Ti3C2, leading to the weakening of its peroxidase-like property. The change of peroxidase-like property attenuated oxidation of TMB, and the ampicillin content was inversely proportional to the concentration of oxidized TMB, and the blue color of solution faded, which enabled the determination of ampicillin. The linear range for ampicillin was 0.005-0.5 µg mL- 1, and the detection limit was 1.1 ng mL- 1 (S/N = 3). The sensor was applied to the detection of ampicillin in milk and human serum.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Titânio , Peroxidase/química , Peroxidases
2.
Mikrochim Acta ; 190(8): 300, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462758

RESUMO

Morphologically controllable ALG@ε-PL water-in-water microspheres were successfully prepared using a two-step method through precise control of the two-phase flow rate. Through further interfacial coagulation, the ALG@ε-PL microspheres possess a dense surface structure and good permeability. The sensor based on PtS2@ALG@ε-PL microspheres was constructed by encapsulating PtS2 nanosheets with peroxidase-like properties in ALG@ε-PL water-in-water microspheres. PtS2 nanosheets catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce blue oxTMB. The strong reducing property of the model analyte dopamine (DA) can reduce oxTMB, thus causing the blue color to fade and successfully achieving colorimetric detection of DA. The linear range of the assay is 2.0-200 µM, and the detection limit is 0.22 µM. The recoveries of DA in serum samples were determined by the spik method, and the results were reproducible.


Assuntos
Nanopartículas , Peroxidase , Peroxidase/química , Colorimetria/métodos , Microesferas , Peróxido de Hidrogênio/química , Polilisina , Oxirredutases , Corantes/química , Água
3.
ACS Appl Mater Interfaces ; 16(3): 3116-3125, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224533

RESUMO

High concentrations of reactive oxygen and nitrogen species (RONS) are key characteristics of inflammatory sites. Scavenging RONS at the site of inflammation is an effective therapeutic strategy. This study introduces ultrasmall Cu2O@His nanoparticles with RONS-scavenging ability for the treatment of inflammatory bowel disease (IBD) in mice. The strong coordination between the nitrogen atom in histidine (His) and copper enhances the dispersion and stability of Cu2O@His. Due to their small size and large surface area, Cu2O@His exhibits outstanding RONS-clearing ability. Importantly, Cu2O@His can target mitochondrial sites and repair damaged mitochondria. With excellent dispersion and scavenging RONS ability, Cu2O@His demonstrates good efficacy in treating mouse IBD. This work provides a new paradigm for developing nanozymes with an ultrasmall size and multiple scavenging RONS abilities.


Assuntos
Cobre , Doenças Inflamatórias Intestinais , Camundongos , Animais , Histidina , Anti-Inflamatórios , Espécies Reativas de Oxigênio , Espécies Reativas de Nitrogênio , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa