Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(3): E268-E276, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197791

RESUMO

Glucagon-like peptide 1 (GLP-1) regulates food intake, insulin production, and metabolism. Our recent study demonstrated that pancreatic α-cells-secreted (intraislet) GLP-1 effectively promotes maternal insulin secretion and metabolic adaptation during pregnancy. However, the role of circulating GLP-1 in maternal energy metabolism remains largely unknown. Our study aims to investigate systemic GLP-1 response to pregnancy and its regulatory effect on fetal growth. Using C57BL/6 mice, we observed a gradual decline in maternal blood GLP-1 concentrations. Subsequent administration of the GLP-1 receptor agonist semaglutide (Sem) to dams in late pregnancy revealed a modest decrease in maternal food intake during initial treatment. At the same time, no significant alterations were observed in maternal body weight or fat mass. Notably, Sem-treated dams exhibited a significant decrease in fetal body weight, which persisted even following the restoration of maternal blood glucose levels. Despite no observable change in placental weight, a marked reduction in the placenta labyrinth area from Sem-treated dams was evident. Our investigation further demonstrated a substantial decrease in the expression levels of various pivotal nutrient transporters within the placenta, including glucose transporter one and sodium-neutral amino acid transporter one, after Sem treatment. In addition, Sem injection led to a notable reduction in the capillary area, number, and surface densities within the labyrinth. These findings underscore the crucial role of modulating circulating GLP-1 levels in maternal adaptation, emphasizing the inhibitory effects of excessive GLP-1 receptor activation on both placental development and fetal growth.NEW & NOTEWORTHY Our study reveals a progressive decline in maternal blood glucagon-like peptide 1 (GLP-1) concentration. GLP-1 receptor agonist injection in late pregnancy significantly reduced fetal body weight, even after restoration of maternal blood glucose concentration. GLP-1 receptor activation significantly reduced the placental labyrinth area, expression of some nutrient transporters, and capillary development. Our study indicates that reducing maternal blood GLP-1 levels is a physiological adaptation process that benefits placental development and fetal growth.


Assuntos
Glicemia , Placenta , Animais , Feminino , Camundongos , Gravidez , Glicemia/metabolismo , Desenvolvimento Fetal , Peso Fetal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Camundongos Endogâmicos C57BL , Placenta/metabolismo
2.
Environ Sci Technol ; 58(8): 3629-3640, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354315

RESUMO

Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.


Assuntos
Poluentes Atmosféricos , Material Particulado , Masculino , Feminino , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Medição de Risco , China/epidemiologia , Carvão Mineral/análise
3.
Environ Sci Technol ; 57(14): 5957-5966, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36994990

RESUMO

Organic aerosol (OA) is a key component of fine particulate matter (PM2.5) and affects the human health and leads to climate change. With strict control measures for air pollutants during the last decade, the OA concentration in China declined slowly, while its sources remain unclear. In this study, we simulate the primary OA (POA) and secondary OA (SOA) concentrations from 2005 to 2019 with a state-of-the-art air quality model, Community Multiscale Air Quality (CMAQ, version 5.3.2) coupled with a Two-Dimensional Volatility Basis Set (2D-VBS) module, and a long-term emission inventory of full-volatility organic compounds in China and conduct source apportionment and sensitivity analysis. The simulation results show that, from 2005 to 2019, the OA concentration in China decreased from 24.0 to 12.8 µg/m3 with most of the reduction from POA. The OA pollution from residential biomass burning declined 75% from 2005 to 2019, while it is still the major OA source in China. OA pollution from VCP increased by more than 2-fold and became the largest SOA source in China. From 2014 to 2019, the NOx control in China slightly offset the decrease of SOA concentration due to elevated oxidation capacity.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Aerossóis/análise
4.
Environ Sci Technol ; 57(42): 15979-15989, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37821356

RESUMO

Aerosol nitrate (NO3-) constitutes a significant component of fine particles in China. Prioritizing the control of volatile organic compounds (VOCs) is a crucial step toward achieving clean air, yet its impact on NO3- pollution remains inadequately understood. Here, we examined the role of VOCs in NO3- formation by combining comprehensive field measurements conducted during the China International Import Expo (CIIE) in Shanghai (from 10 October to 22 November 2018) and multiphase chemical modeling. Despite a decline in primary pollutants during the CIIE, NO3- levels increased compared to pre-CIIE and post-CIIE─NO3- concentrations decreased in the daytime (by -10 and -26%) while increasing in the nighttime (by 8 and 30%). Analysis of the observations and backward trajectory indicates that the diurnal variation in NO3- was mainly attributed to local chemistry rather than meteorological conditions. Decreasing VOCs lowered the daytime NO3- production by reducing the hydroxyl radical level, whereas the greater VOCs reduction at night than that in the daytime increased the nitrate radical level, thereby promoting the nocturnal NO3- production. These results reveal the double-edged role of VOCs in NO3- formation, underscoring the need for transferring large VOC-emitting enterprises from the daytime to the nighttime, which should be considered in formulating corresponding policies.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Nitratos/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , China , Poluição Ambiental/análise , Monitoramento Ambiental , Ozônio/análise
5.
Environ Sci Technol ; 57(1): 64-75, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36516990

RESUMO

Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , China , Ozônio/análise , Monitoramento Ambiental , Nitrogênio/análise
6.
Atmos Environ (1994) ; 289: 119308, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35967886

RESUMO

During the Covid-19 outbreak, strict lockdown measures led to notable reductions in transportation-related emissions and significantly altered atmospheric pollution characteristics in urban and suburban areas. In this work, we compare comprehensive online measurements of PM2.5 major components and organic molecular markers in a suburban location in Shanghai, China before lockdown (Dec. 28, 2019 to Jan. 23, 2020) and during lockdown (Jan. 24 to Feb. 9, 2020). The NOx levels declined sharply by 59% from 44 to 18 ppb during the lockdown, while O3 rose two times higher to 42 ppb. The PM2.5 level dropped from 64 to 49 µg m-3 (-24%). The major components all showed reductions, with the reduction of nitrate most prominent at -58%, followed by organics at -19%, and sulfate at -17%. Positive matrix factorization analysis identifies fourteen source factors, including nine primary sources and five secondary sources. The secondary sources consist of sulfate-rich factor, nitrate-rich factor, and three secondary organic aerosol (SOA) factors, with SOA_I being anthropogenic SOA, SOA_II associated with later generation products of organic oxidation, and SOA_III being biogenic SOA. The combined secondary sources contributed to 69% and 63% (40 and 22 µg m-3) of PM2.5 before and during lockdown, respectively, among which the reductions in the nitrate-rich (-55%) factor was the most prominent. Among primary sources, large reductions (>80%) were observed in contributions from industrial, cooking, and vehicle emissions. Unlike some studies reporting that the restriction during the Covid-19 resulted in enhanced secondary sulfate and SOA formation, we observed decreases in both secondary inorganic and SOA formation despite the overall elevated oxidizing capacity in the suburban site. Our results indicate that the formation change in secondary inorganic and organic compounds in response to substantial reductions in urban primary precursors are different for urban and suburban environments.

7.
Faraday Discuss ; 226: 112-137, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241247

RESUMO

Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 µg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 µgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 µg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 µg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 µg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 µgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.


Assuntos
COVID-19/patologia , Carbono/análise , Material Particulado/análise , Biomassa , COVID-19/virologia , Carbono/química , China , Análise por Conglomerados , Monitoramento Ambiental/métodos , Humanos , Nitratos/análise , Quarentena , SARS-CoV-2/isolamento & purificação
8.
Environ Sci Technol ; 55(21): 14526-14535, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672547

RESUMO

Cooking organic aerosol (COA) is an important source of particulate pollutants in urbanized regions. Yet, the diversity and complexity of COA components make direct identification and quantification of COA difficult. In this study, we conducted collocated OA measurements with an aerosol mass spectrometer (AMS) and a thermal desorption aerosol gas chromatography-mass spectrometer (TAG) in Shanghai. Cooking molecular tracers (e.g., C18 fatty acids, azelaic acid) measured by TAG provide unambiguous source information for evaluating the tracer ion (C6H10O+, m/z 98) used for identification and apportionment of COA in AMS analysis. Based on the collocated AMS and TAG measurements, two COA factors, namely, a primary COA (PCOA) and an oxygenated COA (OCOA) produced from rapid oxygenation of freshly emitted PCOA, were identified. Criteria for identifying COA factors from AMS analysis with different oxygenation levels are proposed, i.e., characteristic mass spectra, temporal variations, etc. Furthermore, two positive matrix factorization approaches, namely, AMS-PMF and the molecular marker (MM)-PMF, were compared for COA quantification, where high consistency was found with the contribution of COA to total PM2.5 mass estimated to be 9 ± 7% by AMS-PMF and 6 ± 5% by the MM-PMF. Our study highlights the important impacts of cooking activities on air quality in urban areas. We also demonstrate the advantage of conducting collocated measurements using multiple high time resolution mass spectrometric techniques in advancing our understanding of atmospheric OA chemistry and improving the accuracy of source apportionment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Culinária , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Material Particulado/análise
9.
Environ Sci Technol ; 54(24): 15622-15630, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256403

RESUMO

To understand the chemical evolution of dust in the current East Asian atmosphere, the chemistry of PM2.5 and size-resolved aerosols in Shanghai, China, during the 2019 dust storm event was investigated. Our results showed that concentrations of SO42- in the city during the event highly correlated with Ca2+ and Na+ due to the direct emissions of CaSO4 and Na2SO4 from the upwind deserts. In contrast, during the event, NO3- linearly correlated with NH4+ at a molar ratio close to 1:1, and both almost entirely stayed in coarse particles, suggesting they accumulated on the dust surface as NH4NO3. Based on the field observations and laboratory smog chamber simulations, we found that NO2 and O3 in Shanghai during the dust period reacted to form N2O5, which subsequently hydrolyzed into HNO3 on the surface of saline mineral dusts (e.g., CaSO4 and Na2SO4) and was further neutralized by NH3 as NH4NO3. The relative abundances of NO3- and NH4+ in Shanghai during the dust event were notably higher than those a decade ago, indicating that this heterogeneous formation of NH4NO3 on dust was enhanced by the abundantly coexisting NOx, O3, and NH3 in the current East Asian atmosphere, which should be considered in future modeling studies.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , China , Cidades , Poeira/análise , Monitoramento Ambiental , Ásia Oriental , Minerais , Nitratos , Material Particulado/análise , Estações do Ano
10.
Dev Dyn ; 248(5): 363-374, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843624

RESUMO

BACKGROUND: Numerous pathologies of pregnancy originate from placental dysfunction. It is essential to understand the functions of key genes in the placenta in order to discern the etiology of placental pathologies. A paucity of animal models that allow conditional and inducible expression of a target gene in the placenta is a major limitation for studying placental development and function. RESULTS: To study the platelet-derived growth factor receptor alpha (PDGFRα)-directed and tamoxifen-induced Cre recombinase expression in the placenta, PDGFRα-CreER mice were crossed with mT/mG dual-fluorescent reporter mice. The expression of endogenous membrane-localized enhanced green fluorescent protein (mEGFP) and/or dTomato in the placenta was examined to identify PDGFRα promoter-directed Cre expression. Pregnant PDGFRα-CreER;mT/mG mice were treated with tamoxifen at various gestational ages. Upon tamoxifen treatment, reporter protein mEGFP was observed in the junctional zone (JZ) and chorionic plate (CP). Furthermore, a single dose of tamoxifen was sufficient to induce the recombination. CONCLUSIONS: PDGFRα-CreER expression is restricted to the JZ and CP of mouse placentas. PDGFRα-CreER mice provide a useful tool to conditionally knock out or overexpress a target gene in these regions of the mouse placenta.


Assuntos
Integrases/metabolismo , Placenta/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Feminino , Camundongos , Gravidez , Recombinação Genética , Tamoxifeno/farmacologia
11.
Int J Obes (Lond) ; 43(9): 1747-1758, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30622311

RESUMO

BACKGROUND: Excessive gestational weight gain (EGWG) closely associates with postpartum obesity. However, the causal role of EGWG in postpartum obesity has not been experimentally verified. The objective of this study was to determine whether and how EGWG causes long-term postpartum obesity. METHODS: C57BL/6 mice were fed with high-fat diet during gestation (HFFDG) or control chow, then their body composition and energy metabolism were monitored after delivery. RESULTS: We found that HFFDG significantly increased gestational weight gain. After delivery, adiposity of HFFDG-treated mice (Preg-HF) quickly recovered to the levels of controls. However, 3 months after parturition, Preg-HF mice started to gain significantly more body fat even with regular chow. The increase of body fat of Preg-HF mice was progressive with aging and by 9 months after delivery had increased 2-fold above the levels of controls. The expansion of white adipose tissue (WAT) of Preg-HF mice was manifested by hyperplasia in visceral fat and hypertrophy in subcutaneous fat. Preg-HF mice developed low energy expenditure and UCP1 expression in interscapular brown adipose tissue (iBAT) in later life. Although blood estrogen concentrations were similar between Preg-HF and control mice, a significant decrease in estrogen receptor α (ERα) expression and hypermethylation of the ERα promoter was detected in the fat of Preg-HF mice 9 months after delivery. Interestingly, hypermethylation of ERα promoter and low ERα expression were only detected in adipocyte progenitor cells in both iBAT and WAT of Preg-HF mice at the end of gestation. CONCLUSIONS: These results demonstrate that HFFDG causes long-term postpartum obesity independent of early postpartum fat retention. This study also suggests that HFFDG adversely programs long-term postpartum energy metabolism by epigenetically reducing estrogen signaling in both BAT and WAT.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ganho de Peso na Gestação/fisiologia , Obesidade/fisiopatologia , Período Pós-Parto/fisiologia , Aumento de Peso/fisiologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Environ Sci Technol ; 53(15): 8664-8671, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31265258

RESUMO

The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to ∼40% of the total SOA budget during summertime. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a unique product from the OH-initiated oxidation of toluene in the presence of elevated NOx, was used as a tracer to back calculate the toluene SOA concentrations. By taking account for the effect of gas-particle partitioning processes on the fraction of DHOPA in the particle phase, the estimated toluene SOA concentrations agree within ∼33% with the estimates by the parametrization method. The agreement between these two independent approaches highlight the need to update current model frameworks with recent laboratory advances for a more accurate representation of SOA formation in regions with substantial anthropogenic emissions.


Assuntos
Poluentes Atmosféricos , Tolueno , Aerossóis , China , Oxirredução , Fotoquímica
13.
Am J Physiol Endocrinol Metab ; 315(6): E1224-E1231, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277793

RESUMO

To determine the role of UCP1-mediated thermogenesis in controlling maternal metabolic adaptation to pregnancy, energy metabolism of C57BL/6 wild-type (WT) and Ucp1 gene knockout ( Ucp1-/-) mice was studied during pregnancy. With the progression of pregnancy, maternal energy expenditure rates (EERs), expression of UCP1, and core body temperature steadily declined in WT dams. Despite no significant alterations in core body temperature and weight gain during pregnancy, Ucp1-/- dams exhibited lower rates in EER decline. High-fat (HF) feeding not only robustly increased maternal UCP1 expression and core body temperature but also abolished gestation-suppressed EER in WT dams. However, HF-increased EERs were significantly attenuated in Ucp1-/- dams. Significantly increased fetal body weights and fetal/placental weight ratio were detected in fetuses from Ucp1-/- dams compared with fetuses from WT dams. Markedly increased expression levels of glucose transporter 1 and amino acid transporters were also observed in placentas from Ucp1-/- dams. Furthermore, blood glucose concentrations of fetuses from Ucp1-/- dams were significantly higher than those of fetuses from WT dams, indicating that maternal UCP1 has an inhibitory effect on placental efficiency and fetal growth. Taken all together, this study demonstrated that maternal brown adipose tissue plays an important role in controlling maternal metabolic adaptation and placental nutrient transport.


Assuntos
Adaptação Fisiológica/fisiologia , Tecido Adiposo Marrom/metabolismo , Desenvolvimento Fetal/fisiologia , Placenta/metabolismo , Termogênese/fisiologia , Animais , Feminino , Camundongos , Camundongos Knockout , Gravidez , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Environ Sci Technol ; 52(24): 14216-14227, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30288976

RESUMO

An integrated source apportionment methodology is developed by amalgamating the receptor-oriented model (ROM) and source-oriented numerical simulations (SOM) together to eliminate the weaknesses of individual SA methods. This approach attempts to apportion and dissect the PM2.5 sources in the Yangtze River Delta region during winter. First, three ROM models (CMB, PMF, ME2) are applied and compared for the preliminary SA results, with information from PM2.5 sampling and lab analysis during the winter seasons. The detailed source category contribution of SOM to PM2.5 is further simulated using the WRF-CAMx model. The two pieces of information from both ROM and SOM are then stitched together to give a comprehensive information on the PM2.5 sources over the region. With the integrated approach, the detailed contributing sources of the ambient PM2.5 at different receptors including rural and urban, coastal and in-land, northern and southern receptors are analyzed. The results are compared with previous data and shows good agreement. This integrative approach is more comprehensive and is able to produce a more profound and detailed understanding between the sources and receptors, compared with single models.


Assuntos
Poluentes Atmosféricos , Material Particulado , China , Monitoramento Ambiental , Rios
15.
Environ Sci Technol ; 52(21): 12934-12942, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351037

RESUMO

Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis , Compostos Orgânicos , Navios , Volatilização
16.
Environ Sci Technol ; 51(14): 8128-8137, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28621946

RESUMO

Limited evidence is available on the effects of various fine particulate matter (PM2.5) constituents on blood inflammation and coagulation. We examined the associations between 10 constituents and 10 circulating biomarkers in a panel of 28 urban residents with four repeated measurements in Shanghai, China. Based on the linear mixed-effect models, we fitted the single-constituent models, the constituent-PM2.5 joint models, and the constituent-residual models to evaluate the associations between PM2.5 constituents and eight inflammatory biomarkers (fibrinogen, C-reactive protein, monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-1b, intercellular adhesion molecule-1, P-selectin, vascular cell adhesion molecule-1) and two coagulation biomarkers (plasminogen activator inhibitor-1 and soluble CD40 ligand). We found robust associations of organic carbon (OC), elemental carbon (EC), nitrate (NO3-), and ammonium (NH4+) with at least 1 of 8 inflammatory markers. On average, an interquartile range increase in the four constituents corresponded to increments of 50%, 37%, 25%, and 26% in inflammatory biomarkers, respectively. Only sulfate (SO42-) or NH4+ was robustly associated with coagulation markers (corresponding increments: 23% and 20%). Our results provided evidence that some constituents in PM2.5 (OC, EC, NO3-, SO42-, and NH4+) might play crucial roles in inducing systematic inflammation and coagulation, but their roles varied by the selected biomarkers.


Assuntos
Poluentes Atmosféricos/toxicidade , Biomarcadores/análise , Inflamação , Material Particulado/toxicidade , Quimiocina CCL2 , China , Humanos , Selectina-P
17.
Environ Sci Technol ; 51(3): 1687-1694, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28056177

RESUMO

The evidence is quite limited regarding the constituents of fine particulate matter (PM2.5) responsible for lung dysfunction. We designed a time-series panel study in 28 patients to examine the effects of 10 major constituents of PM2.5 on lung function with repeated daily measurements from December 2012 to May 2013 in Shanghai, China. We applied a linear mixed-effect model combined with a distributed lag model to estimate the cumulative effects of PM2.5 constituents on morning/evening forced expiratory volume in 1-s (FEV1) and peak expiratory flow (PEF) over a week. The cumulative decreases in morning FEV1, evening FEV1, morning PEF and evening PEF associated with an interquartile range (35.8 µg/m3) increase in PM2.5 concentrations were 33.49 [95% confidence interval(CI):2.45,54.53] mL, 16.80 (95%CI:3.75,29.86) mL, 4.48 (95%CI:2.30,6.66) L/min, and 1.31 (95%CI:-0.85,3.47) L/min, respectively. These results were not substantially changed after adjusting for gases in two-pollutant models. The associations of elemental carbon (EC) and nitrates with morning/evening FEV1, and the associations of EC and sulfates with morning PEF were robust after controlling for PM2.5. This study demonstrated that short-term exposure to PM2.5 was associated with reduced pulmonary function. Some constituents (EC, sulfate and nitrate) may be responsible for the detrimental effects.


Assuntos
Poluentes Atmosféricos/farmacologia , Material Particulado , China , Volume Expiratório Forçado , Humanos , Pulmão/efeitos dos fármacos
18.
Environ Res ; 159: 291-296, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28825983

RESUMO

OBJECTIVE: The evidence is limited about the potentially different health effects of various chemical constituents of fine particulate matter (PM2.5). We thus assessed the acute effects of various chemical constituents of PM2.5 on blood pressure (BP). METHODS: We performed a longitudinal panel study with six repeated visits in 28 urban residents with chronic obstructive pulmonary disease in Shanghai, China from May to July, 2014. Twelve (43%) of them took antihypertensive medications. We measured resting BP by using a mercury sphygmomanometer and monitored real-time concentrations of PM2.5 constituents at a nearby site. Based on the linear mixed-effects model, we evaluated the effects of 10 major constituents in PM2.5 on BP, using a single-constituent model and a constituent-residual model after accounting for the multicollinearity. RESULTS: We obtained a total of 168 pairs of effective BP measurements during the study period. There are moderate or high correlations among various PM2.5 constituents. An interquartile range increase of PM2.5 (19.1µg/m3) was associated with increments of 1.90mmHg [95% confidence interval (CI): 0.66, 3.13] in systolic BP, 0.68mmHg (95%CI: -0.02, 1.37) in diastolic BP and 1.23mmHg (95%CI: 0.19, 2.29) in pulse pressure. Some constituents of PM2.5, including organic carbon, elemental carbon, nitrate and ammonium, were robustly associated with elevated BP after controlling for total PM2.5 mass and accounting for multi-collinearity. Two constituents (magnesium and calcium) were associated with decreased BP. CONCLUSIONS: Organic carbon, elemental carbon, nitrate and ammonium may be mainly responsible for elevated BP from a short-term exposure to PM2.5.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Pressão Sanguínea , Exposição Ambiental , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Idoso , Compostos de Amônio/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Carbono/efeitos adversos , China , Monitoramento Ambiental , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nitratos/efeitos adversos , Tamanho da Partícula
19.
Diabetologia ; 59(11): 2417-2425, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27495989

RESUMO

AIMS/HYPOTHESIS: The main objective of this study was to investigate whether maternal adiponectin regulates fetal growth through the endocrine system in the fetal compartment. METHODS: Adiponectin knockout (Adipoq (-/-) ) mice and in vivo adenovirus-mediated reconstitution were used to study the regulatory effect of maternal adiponectin on fetal growth. Primary human trophoblast cells were treated with adiponectin and a specific peroxisome proliferator-activated receptor α (PPARα) agonist or antagonist to study the underlying mechanism through which adiponectin regulates fetal growth. RESULTS: The body weight of fetuses from Adipoq (-/-) dams was significantly greater than that of wild-type dams at both embryonic day (E)14.5 and E18.5. Adenoviral vector-mediated maternal adiponectin reconstitution attenuated the increased fetal body weight induced by maternal adiponectin deficiency. Significantly increased blood glucose, triacylglycerol and NEFA levels were observed in Adipoq (-/-) dams, suggesting that nutrient supply contributes to maternal adiponectin-regulated fetal growth. Although fetal blood IGF-1 concentrations were comparable in fetuses from Adipoq (-/-) and wild-type dams, remarkably low levels of IGF-binding protein 1 (IGFBP-1) were observed in the serum of fetuses from Adipoq (-/-) dams. IGFBP-1 was identified in the trophoblast cells of human and mouse placentas. Maternal fasting robustly increased IGFBP-1 levels in mouse placentas, while reducing fetal weight. Significantly low IGFBP-1 levels were found in placentas of Adipoq (-/-) dams. Adiponectin treatment increased IGFBP-1 levels in primary cultured human trophoblast cells, while the PPARα antagonist, MK886, abolished this stimulatory effect. CONCLUSIONS/INTERPRETATION: These results indicate that, in addition to nutrient supply, maternal adiponectin inhibits fetal growth by increasing IGFBP-1 expression in trophoblast cells.


Assuntos
Adiponectina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Trofoblastos/metabolismo , Adiponectina/deficiência , Adiponectina/genética , Animais , Glicemia/metabolismo , Células Cultivadas , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Indóis/farmacologia , Camundongos , Camundongos Knockout , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Placenta/metabolismo , Gravidez , Triglicerídeos/sangue , Trofoblastos/efeitos dos fármacos
20.
J Environ Sci (China) ; 48: 151-160, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27745660

RESUMO

In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42-) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3-) were observed in winter and spring. The mass concentrations of Cl- and K+ were higher in winter. Moreover, NO3- increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , China , Nitratos , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Sulfatos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa