Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell ; 169(5): 945-955.e10, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525759

RESUMO

Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Animais , Encéfalo/fisiologia , Cromossomos Humanos X , Ritmo Circadiano , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Edição de Genes , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Mutação , Dor , Síndrome de Rett/fisiopatologia , Sono , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcriptoma
2.
Mol Cell ; 73(3): 547-561.e6, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735655

RESUMO

Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.


Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Meiose , Espermatogênese , Espermatozoides/metabolismo , Animais , Cromatina/química , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HCT116 , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Estágio Paquíteno , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica , Inativação do Cromossomo X
3.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931239

RESUMO

Transcription factor-like 5 (TCFL5) is a testis-specific protein that contains the basic helix-loop-helix domain, but the in vivo functions of TCFL5 remain unknown. Herein, we generated CRISPR/Cas9-mediated knockout mice to dissect the function of TCFL5 in mouse testes. Surprisingly, we found that it was difficult to generate homozygous mice with the Tcfl5 deletion as the heterozygous males (Tcfl5+/-) were infertile. However, we did observe markedly abnormal phenotypes of spermatids and spermatozoa in the testes and epididymides of Tcfl5+/- mice. Mechanistically, we demonstrated that TCFL5 transcriptionally and post-transcriptionally regulated a set of genes participating in male germ cell development via TCFL5 ChIP-DNA and eCLIP-RNA high-throughput sequencing. We also identified a known RNA-binding protein, FXR1, as an interacting partner of TCFL5 that may coordinate the transition and localization of TCFL5 in the nucleus. Collectively, we herein report for the first time that Tcfl5 is haploinsufficient in vivo and acts as a dual-function protein that mediates DNA and RNA to regulate spermatogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Espermatogênese , Testículo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA/metabolismo , Fertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo
4.
Development ; 148(2)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33318146

RESUMO

Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.


Assuntos
Infertilidade Feminina/metabolismo , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Núcleo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , Feminino , Mutação em Linhagem Germinativa/genética , Infertilidade Feminina/complicações , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Masculino , Meiose , Metáfase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Modelos Biológicos , Insuficiência Ovariana Primária/complicações , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fuso Acromático/metabolismo
5.
Brain Behav Immun ; 119: 56-83, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555992

RESUMO

Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1ß-C/EBPß-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.


Assuntos
Depressão , Hipocampo , Estresse Psicológico , Animais , Hipocampo/metabolismo , Camundongos , Depressão/metabolismo , Masculino , Estresse Psicológico/metabolismo , Receptor trkB/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Glicoproteínas de Membrana/metabolismo
6.
Anal Chem ; 95(9): 4570-4575, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825747

RESUMO

The assay of thrombin levels is integral to the assessment of coagulation function and clinical screening of coagulation disorder-related diseases. In this work, we illustrate the ingenious use of the target-synergized biologically mediated reversible addition-fragmentation chain transfer (RAFT) polymerization (tsBMRP) as a novel amplification strategy for the electrochemical aptamer-based biosensing of thrombin at the femtomolar levels. Briefly, the tsBMRP-based strategy relies on the boronate affinity-mediated decoration of the glycan chain(s) of the target itself with RAFT agents and the subsequent recruitment of signal labels via BMRP, mediated by the direct reduction of RAFT agents by NADH into initiating/propagating radicals. Obviously, the tsBMRP-based strategy is biologically friendly, low-cost, and simple in operation. As thrombin is a glycoconjugate, its electrochemical aptasensing involves the use of the thrombin-binding aptamer (TBA) as the recognition receptor, the site-specific decoration of RAFT agents to the glycan chain of thrombin via boronate affinity, and further the recruitment of ferrocene signal labels via the BMRP of ferrocenylmethyl methacrylate (FcMMA). As boronate affinity results in the decoration of each glycan chain with tens of RAFT agents while BMRP recruits hundreds of signal labels to each RAFT agent-decorated site, the tsBMRP-based strategy allows us to detect thrombin at a concentration of 35.3 fM. This electrochemical aptasensor is highly selective, and its applicability to thrombin detection in serum samples has been further demonstrated. The merits of high sensitivity and selectivity, low cost, good anti-interference capability, and simple operation make the tsBMRP-based electrochemical thrombin aptasensor great promise in biomedical and clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Trombina , Polimerização , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
7.
Pak J Pharm Sci ; 36(6): 1709-1718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38124410

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by an infection progressing to sepsis-associated organ failure (such as lung injury). Our previous review revealed that Astragaloside IV (ASI-IV), one of the primary bioactive ingredients in Astragalus membranaceus (Fisch) Bge (Huang-Qi), had been shown to exert anti-inflammatory and immunomodulatory effects. Nevertheless, it is still unclear whether ASI-IV could attenuate septic lung injury via activating regulatory T-cells (Tregs). This study was designed to evaluate the therapeutic potential of ASI-IV on sepsis-induced lung injury and to further explore its underlying mechanism. In the murine models of cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) induced sepsis, ASI-IV can markedly improve the survival rate and reduce inflammatory lung injury, protect mice against exacerbated inflammatory responses by decreasing myeloid cell infiltration and down-regulating IL-6 and TNF-α in lung tissue. Meanwhile, Treg cell-related gene expression, including Foxp3 and IL-10, significantly increased after ASI-IV treatment. Furthermore, ASI-IV notably promoted the differentiation of naïve CD4+ T cells into T regulatory cells without obviously affecting Th1 and Th17 differentiation. Our results indicated that ASI-IV could attenuate septic lung injury by promoting Treg cell expansion and inhibiting inflammatory responses. It represents a promising agent for the treatment of sepsis.


Assuntos
Lesão Pulmonar , Saponinas , Sepse , Camundongos , Animais , Linfócitos T Reguladores , Sepse/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/metabolismo , Modelos Animais de Doenças
8.
Anal Chem ; 94(16): 6200-6205, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35426653

RESUMO

The assay of kinase activity with ultrahigh sensitivity is important to medical diagnostics and drug discovery. Herein, we report the biologically mediated RAFT polymerization (BMRP) and its potential use as an efficient amplification strategy in the ultrasensitive electrochemical sensing of kinase activity. In BMRP, the reversible addition-fragmentation chain-transfer (RAFT) process is initiated and sustained by the reduced form of coenzyme I (i.e., NADH), which can efficiently mediate the direct fragmentation of thiocarbonylthio (TCT) compounds (or the TCT-capped dormant chains) to produce an initiating/propagating radical under mild conditions. Due to the absence of exogenous radicals, the notorious radical termination in RAFT equilibrium can be greatly suppressed. For the sensing of kinase activity, the recognition peptides, without carboxyl groups, are immobilized via the Au-S self-assembly. After phosphorylation, TCT compounds (as RAFT agents) are tethered to the enzymatically generated phosphate groups via the carboxylate-Zr(IV)-phosphate (CZP) linkage. Subsequently, the BMRP of ferrocenylmethyl methacrylate (FcMMA) results in the labeling of each phosphate group with hundreds to thousands of Fc tags, thereby greatly amplifying the sensing signal. Obviously, the BMRP-based strategy is biologically friendly, highly efficient, uncomplicated, and quite low-cost. The detection limit of 1.85 mU/mL has been achieved toward the selective sensing of the cAMP-dependent protein kinase (PKA). Moreover, the proposed kinase sensor is applicable to inhibitor screening and kinase activity sensing in serum samples. By virtue of its low cost, high sensitivity and selectivity, and uncomplicated operation, the proposed kinase sensor holds great potential in medical diagnostics and drug discovery.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Fosfatos , Fosforilação , Polimerização
9.
BMC Neurol ; 22(1): 400, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324078

RESUMO

BACKGROUND: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease that involves damage to the peripheral nervous system. The course of the disease can progress for more than 8 weeks, with frequent incidences of relapse-remission courses. This article reported a rare combination of CIDP with fluctuating symptoms, recurrence-remission, and comorbidity with psoriasis. CASE PRESENTATION: A 29-year-old male patient with repeated limb weakness and numbness was admitted to the hospital several times in the past six months. He had a history of psoriasis for 6 years, and the medications (clobetasol propionate ointment and calcipotriol ointment) treated for psoriasis were discontinued 1 year ago. During the hospitalization, repeated intravenous injections of human immunoglobulin G (IVIg), immunoadsorption, and secukinumab were performed. Nerve electrophysiology tests, ganglioside autoantibody spectrum tests, and clinical MRC muscle strength scores were performed on a regular basis to confirm the diagnosis of CIDP. The patient was regularly followed up. RESULTS: After repeated rounds of human IVIg and immunoadsorption, the patient's MRC score was increased by ≥ 6 points. The first ganglioside autoantibody spectrum test showed anti-GQ1b IgG ( +) and anti-GM1 IgM ( +) antibodies, and all were negative after re-examination. Finally, the patient was treated with the IL-17A inhibitor secukinumab for psoriasis. During 7 months of follow-up, the CIDP and psoriasis symptoms are relatively stable. CONCLUSION: Combination of IVIg and immunoadsorption was highly effective in treating CIDP complicated with psoriasis. The clinical manifestations of CIDP are diverse. When relapse-remission occurs in the course of the disease, it is necessary to clarify whether it is combined with other autoimmune diseases and should control the autoimmune diseases as soon as possible.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Psoríase , Masculino , Humanos , Adulto , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/complicações , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Imunoglobulinas Intravenosas/uso terapêutico , Pomadas/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoglobulina G , Gangliosídeos , Doença Crônica , Psoríase/complicações , Psoríase/tratamento farmacológico , Comorbidade , Recidiva
10.
Anal Chem ; 93(27): 9602-9608, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34185503

RESUMO

Trypsin is a key proteolytic enzyme in the digestive system and its abnormal levels are indicative of some pancreatic diseases. Taking advantage of the coenzyme-mediated electrografting of ferrocenyl polymers as a novel strategy for signal amplification, herein, a signal-on cleavage-based electrochemical biosensor is reported for the highly selective interrogation of trypsin activity at ultralow levels. The construction of the trypsin biosensor involves (i) the immobilization of peptide substrates (without free carboxyl groups) via the N-terminus, (ii) the tryptic cleavage of peptide substrates, (iii) the site-specific labeling of the reversible addition-fragmentation chain transfer (RAFT) agents, and (iv) the grafting of ferrocenyl polymers through the electro-RAFT (eRAFT) polymerization, which is mediated by potentiostatic reduction of nicotinamide adenine dinucleotide (NAD+) coenzymes. Through the NAD+-mediated eRAFT (NAD+-eRAFT) polymerization of ferrocenylmethyl methacrylate (FcMMA), the presence of a few tryptic cleavage events can eventually result in the recruitment of a considerable amount of ferrocene redox tags. Obviously, the NAD+-eRAFT polymerization is low-cost and easy to operate as a highly efficient strategy for signal amplification. As expected, the as-constructed biosensor is highly selective and sensitive toward the signal-on interrogation of trypsin activity. Under optimal conditions, the detection limit can be as low as 18.2 µU/mL (∼72.8 pg/mL). The results also demonstrate that the as-constructed electrochemical trypsin biosensor is applicable to inhibitor screening and the interrogation of enzyme activity in the presence of complex sample matrices. Moreover, it is low-cost, less susceptible to false-positive results, and relatively easy to fabricate, thus holding great potential in diagnostic and therapeutic applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Coenzimas , Polimerização , Tripsina
11.
Small ; 17(23): e2100132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891808

RESUMO

Poor charge separation is the main factor that limits the photocatalytic hydrogen generation efficiency of organic conjugated polymers. In this work, a series of linear donor-acceptor (D-A) type oligomers are synthesized by a palladium-catalyzed Sonogashira-Hagihara coupling of electron-deficient diborane unit and different dihalide substitution sulfur functionalized monomers. Such diborane-based A unit exerts great impact on the resulting oligomers, including distinct semiconductor characters with isolated lowest unoccupied molecular orbital (LUMO) orbits locating in diborane-containing fragment, and elevated LUMO level higher than water reduction potential. Relative to A-A type counterpart, the enhanced dipole polarization effect in D-A oligomers facilitates separation of photogenerated charge carriers, as evidenced by notably prolonged electron lifetime. Owing to π-π stacking of rigid backbone, the oligomers can aggregate into an interesting 2D semicrystalline nanosheet (≈2.74 nm), which is rarely reported in linear polymeric photocatalysts prepared by similar carbon-carbon coupling reaction. Despite low surface area (30.3 m2 g-1 ), such ultrathin nanosheet D-A oligomer offers outstanding visible light (λ > 420 nm) hydrogen evolution rate of 833 µmol g-1 h-1 , 14 times greater than its A-A analogue (61 µmol g-1 h-1 ). The study highlights the great potential of using boron element to construct D-A type oligomers for efficient photocatalytic hydrogen generation.

12.
Chemistry ; 25(46): 10918-10925, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31211454

RESUMO

Security inks based on photoluminescent materials are mostly investigated for security applications, such as information encryption and decryption, anti-counterfeiting, and data storage. Although they are invisible to the naked eye under ambient light, they can be detected under ultraviolet or near-infrared light. Herein, a new kind of secret paper made from network-structured ultralong hydroxyapatite nanowires and cellulose fibers has been developed. White vinegar, a common cooking ingredient, is used as an invisible security ink. Covert information on the secret paper written with white vinegar is totally invisible under natural light, but it can be decrypted and clearly read after exposure to fire; the response time to fire is short (<10 s). The ways of writing on the secret paper are diverse by using various pens loaded with white vinegar.

13.
Small ; 14(50): e1803387, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370652

RESUMO

Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.

14.
Small ; 14(15): e1703989, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29493087

RESUMO

Recombination of photogenerated electron-hole pairs is extremely limited in the practical application of photocatalysis toward solving the energy crisis and environmental pollution. A rational design of the cascade system (i.e., rGO/Bi2 WO6 /Au, and ternary composites) with highly efficient charge carrier separation is successfully constructed. As expected, the integrated system (rGO/Bi2 WO6 /Au) shows enhanced photocatalytic activity compared to bare Bi2 WO6 and other binary composites, and it is proved in multiple electron transfer (MET) behavior, namely a cooperative electron transfer (ET) cascade effect. Simultaneously, UV-vis/scanning electrochemical microscopy is used to directly identify MET kinetic information through an in situ probe scanning technique, where the "fast" and "slow" heterogeneous ET rate constants (Keff ) of corresponding photocatalysts on the different interfaces are found, which further reveals that the MET behavior is the prime source for enhanced photocatalytic activity. This work not only offers a new insight to study catalytic performance during photocatalysis and electrocatalysis systems, but also opens up a new avenue to design highly efficient catalysts in photocatalytic CO2 conversion to useful chemicals and photovoltaic devices.

15.
Analyst ; 143(7): 1699-1704, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29521385

RESUMO

A novel and highly sensitive photoelectrochemical biosensor for the detection of glucose based on ternary nanocomposites of Au/CuS/TiO2 (Au/CuS/TiO2) has been fabricated. Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared by anodization of Ti foils, and CuS nanoparticles (NPs) and Au NPs were deposited on TiO2 NTs by the successive ionic layer adsorption and reaction (SILAR) method. The resultant Au/CuS/TiO2 exhibited excellent photoelectrochemical behavior as a glucose sensor under white light illumination due to the remarkable photocatalytic capabilities of TiO2 and CuS, and the surface plasmonic resonance (SPR) effect of Au NPs. The fabricated Au/CuS/TiO2 non-enzymatic photoelectrochemical sensor showed brilliant catalytic activity, favourable selectivity, good reproducibility and long-term stability for glucose detection under optimized conditions. The linear range was 0.1-3 µM (R = 0.9942) with a detection limit of 0.03 µM (S/N = 3). Moreover, the proposed sensor detected glucose in human serum samples. Thus, Au/CuS/TiO2 appears to be a promising photocatalyst for a non-enzymatic glucose sensor.


Assuntos
Técnicas Biossensoriais , Glicemia/análise , Nanocompostos/química , Cobre , Técnicas Eletroquímicas , Ouro , Humanos , Reprodutibilidade dos Testes , Titânio
16.
Part Fibre Toxicol ; 15(1): 16, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650039

RESUMO

BACKGROUND: The rapid increase in carbon black poses threats to human health. We evaluated the effect of CB (Printex 90) on the osteogenesis of bone-marrow-derived mesenchymal stem cells (MSCs). Mitochondria play an important role in the osteogenesis of MSCs and are potential targets of nanomaterials, so we studied the role of mitochondria in the CB Printex 90-induced effects on osteogenesis. RESULTS: Low doses of Printex 90 (3 ng/mL and 30 ng/mL) that did not cause deleterious effects on MSCs' viability significantly inhibited osteogenesis of MSCs. Printex 90 caused down-regulation of osteoblastic markers, reduced activity of alkaline phosphatase (ALP), and poor mineralization of osteogenically induced MSCs. Cellular ATP production was decreased, mitochondrial respiration was impaired with reduced expression of ATPase, and the mitochondrial membrane was depolarized. The quantity and quality of mitochondria are tightly controlled by mitochondrial biogenesis, mitochondrial dynamics and mitophagy. The transcriptional co-activator and transcription factors for mitochondrial biogenesis, PGC-1α, Nrf1 and TFAM, were suppressed by Printex 90 treatment, suggesting that decreased biogenesis was caused by Printex 90 treatment during osteogenesis. Mitochondrial fusion and fission were significantly inhibited by Printex 90 treatment. PINK1 accumulated in Printex 90-treated cells, and more Parkin was recruited to mitochondria, indicating that mitophagy increased to remove the damaged mitochondria. CONCLUSIONS: This is the first report of the inhibitory effects of CB on the osteogenesis of MSCs and the involvement of mitochondria in CB Printex 90-induced suppression of MSC osteogenesis.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fuligem/toxicidade , Fosfatase Alcalina/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Fatores de Transcrição/metabolismo
17.
Phys Chem Chem Phys ; 19(28): 18232-18242, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28682381

RESUMO

J- and H-aggregates of zinc tetraphenylporphyrin (ZnTPP) on carbon nanotube films (CNTFs) were prepared using the mixed solvent method. This resulted in completely different structures, such as the four-leaf clover and flower, on the CNTF, which were observed by recording SEM images. Characteristic changes in the electronic spectra of the ZnTPP monomer appeared when it underwent J- and H-aggregation. The measured photocurrent significantly varied for the same molecule when it was aggregated in two different ways on ITO and ITO/CNTF. The electron recombination resistance of the two aggregates, which was investigated using electrochemical impedance spectroscopy, was also different. The photocatalytic efficiency of the J- and H-aggregates was examined by performing methylene blue dye decoloration studies. In addition, a scanning electrochemical microscope was used to investigate the photoinduced charge transfer kinetics of the J- and H-aggregates at the electrode/electrolyte interface as a fresh attempt. The heterogeneous charge transfer constants for the J- and H-aggregates in the presence of light at varied intensities were calculated. Thereby, striking differences in the photophysical, photocatalytic, and photoelectrochemical properties of the J- and H-aggregates were visualized throughout our studies.

18.
Phys Chem Chem Phys ; 19(6): 4507-4515, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120968

RESUMO

Graphitic carbon nitride (g-C3N4) has been widely studied as a metal-free photocatalyst, leading to some excellent results; however, the rapid recombination of photogenerated charge carriers substantially limits its performance. Here, we establish two types of g-C3N4-based heterojunction (type II and nonmediator assisted Z-scheme) photoanodes on a transparent conducting substrate via coupling with rod-like and nanoparticulate WO3, respectively. In these composites, g-C3N4 film grown by electrophoretic deposition of exfoliated g-C3N4 serves as the host or guest material. The optimized type II WO3/g-C3N4 composite exhibits an enhanced photocurrent of 0.82 mA cm-2 at 1.23 V vs. RHE and an incident photo-to-current conversion efficiency (IPCE) of 33% as compared with pure WO3 nanorods (0.22 mA cm-2 for photocurrent and 15% for IPCE). Relative to pure g-C3N4 film (with a photocurrent of several microampere and an IPCE of 2%), a largely improved photocurrent of 0.22 mA cm-2 and an IPCE of 20% were acquired for the Z-scheme g-C3N4/WO3 composite. The enhancement can be attributed to accelerated charge separation in the heterointerface because of the suitably aligned band gap between WO3 and g-C3N4, as confirmed by optical spectroscopy and ultraviolet photoelectron spectroscopy (UPS) analysis. The photocatalytic process and mechanism of the g-C3N4-based heterojunctions are proposed herein, which potentially explain the origin of the enhanced photoelectrochemical performance. This achievement and the fundamental information supplied here indicate the importance of rationally designing heterojunction photoelectrodes to improve the performance of semiconductors. This is particularly important for materials such as pure g-C3N4 and WO3, as their photoactivities are strongly restricted by high recombination rates.

19.
Analyst ; 140(2): 560-6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416618

RESUMO

A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs). Due to the strong affinity of phosphate groups with ZrO2 and the advantages of OMP such as high catalytic activity and good conductivity, the developed sensor showed a limit of detection as low as 2.28 × 10(-10) mol L(-1) (S/N = 3) by square-wave voltammograms, and good selectivity, acceptable reproducibility and stability. Most importantly, this novel sensor was successfully applied to detect MP in real samples of apple and cabbage. It is expected that this method has potential applications in electrochemical sensing platforms with simple, sensitive, selective and fast analysis.


Assuntos
Compostos de Anilina/química , Contaminação de Alimentos/análise , Inseticidas/análise , Metil Paration/análise , Zircônio/química , Brassica/química , Técnicas Eletroquímicas/métodos , Eletrodos , Malus/química , Microesferas , Nanocompostos/química , Reprodutibilidade dos Testes , Dióxido de Silício/química
20.
Proc Natl Acad Sci U S A ; 109(39): 15612-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22547794

RESUMO

Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light.


Assuntos
Materiais Biomiméticos/química , Corantes/química , Complexo de Proteína do Fotossistema II/química , Energia Solar , Água/química , Catálise , Hidrogênio/química , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa