Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 455-460, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932530

RESUMO

The main magnetic field, generated by the excitation coil of the magnetic induction phase shift technology detection system, is mostly dispersed field with small field strength, and the offset effect needs to be further improved, which makes the detection signal weak and the detection system difficult to achieve quantitative detection, thus the technology is rarely used in vivo experiments and clinical trials. In order to improve problems mentioned above, a new Helmholtz birdcage sensor was designed. Stimulation experiment was carried out to analyze the main magnetic field in aspects of intensity and magnetic distribution, then different bleeding volume and bleeding rates experiments were conducted to compared with traditional sensors. The results showed that magnetic field intensity in detection region was 2.5 times than that of traditional sensors, cancellation effect of the main magnetic field was achieved, the mean value of phase difference of 10 mL rabbit blood was (-3.34 ± 0.21)°, and exponential fitting adjusted R 2 between phase difference and bleeding volumes and bleeding rates were both 0.99. The proposed Helmholtz birdcage sensor has a uniform magnetic field with a higher field strength, enable more accurate quantification of hemorrhage and monitored change of bleeding rates, providing significance in magnetic induced technology research for cerebral hemorrhage detection.


Assuntos
Hemorragia Cerebral , Campos Magnéticos , Animais , Coelhos
2.
Small ; 19(30): e2302266, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178389

RESUMO

Electroreduction of nitrate to ammonia reaction (NO3 - RR) is considered as a promising carbon-free energy technique, which can eliminate nitrate from waste-water also produce value-added ammonia. However, it remains a challenge for achieving satisfied ammonia selectivity and Faraday efficiency (FE) due to the complex multiple-electron reduction process. Herein, a novel Tandem electrocatalyst that Ru dispersed on the porous graphitized C3 N4 (g-C3 N4 ) encapsulated with self-supported Cu nanowires (denoted as Ru@C3 N4 /Cu) for NO3 - RR is presented. As expected, a high ammonia yield of 0.249 mmol h-1  cm-2 at -0.9 V and high FENH3 of 91.3% at -0.8 V versus RHE can be obtained, while achieving excellent nitrate conversion (96.1%) and ammonia selectivity (91.4%) in neutral solution. In addition, density functional theory (DFT) calculations further demonstrate that the superior NO3 - RR performance is mainly resulted from the synergistic effect between the Ru and Cu dual-active sites, which can significantly enhance the adsorption of NO3 - and facilitate hydrogenation, as well as suppress the hydrogen evolution reaction, thus lead to highly improved NO3 - RR performances. This novel design strategy would pave a feasible avenue for the development of advanced NO3 - RR electrocatalysts.

3.
Biomed Eng Online ; 22(1): 78, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559130

RESUMO

BACKGROUND: Cerebrovascular autoregulation (CVAR) is the mechanism that maintains constant cerebral blood flow by adjusting the caliber of the cerebral vessels. It is important to have an effective, contactless way to monitor and assess CVAR in patients with ischemia. METHODS: The adjustment of cerebral blood flow leads to changes in the conductivity of the whole brain. Here, whole-brain conductivity measured by the magnetic induction phase shift method is a valuable alternative to cerebral blood volume for non-contact assessment of CVAR. Therefore, we proposed the correlation coefficient between spontaneous slow oscillations in arterial blood pressure and the corresponding magnetic induction phase shift as a novel index called the conductivity reactivity index (CRx). In comparison with the intracranial pressure reactivity index (PRx), the feasibility of the conductivity reactivity index to assess CVAR in the early phase of cerebral ischemia has been preliminarily confirmed in animal experiments. RESULTS: There was a significant difference in the CRx between the cerebral ischemia group and the control group (p = 0.002). At the same time, there was a significant negative correlation between the CRx and the PRx (r = - 0.642, p = 0.002) after 40 min after ischemia. The Bland-Altman consistency analysis showed that the two indices were linearly related, with a minimal difference and high consistency in the early ischemic period. The sensitivity and specificity of CRx for cerebral ischemia identification were 75% and 20%, respectively, and the area under the ROC curve of CRx was 0.835 (SE = 0.084). CONCLUSION: The animal experimental results preliminarily demonstrated that the CRx can be used to monitor CVAR and identify CVAR injury in early ischemic conditions. The CRx has the potential to be used for contactless, global, bedside, and real-time assessment of CVAR of patients with ischemic stroke.


Assuntos
Isquemia Encefálica , Encéfalo , Animais , Coelhos , Monitorização Fisiológica/métodos , Encéfalo/irrigação sanguínea , Infarto Cerebral , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Pressão Intracraniana/fisiologia
4.
Biomed Eng Online ; 20(1): 74, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344370

RESUMO

BACKGROUND: Cerebral edema is a common condition secondary to any type of neurological injury. The early diagnosis and monitoring of cerebral edema is of great importance to improve the prognosis. In this article, a flexible conformal electromagnetic two-coil sensor was employed as the electromagnetic induction sensor, associated with a vector network analyzer (VNA) for signal generation and receiving. Measurement of amplitude data over the frequency range of 1-100 MHz is conducted to evaluate the changes in cerebral edema. We proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm for multi-frequency characteristic analysis over the frequency range of 1-100 MHz and investigated its performance in electromagnetic induction-based cerebral edema detection and distinction of its acute/chronic phase. Fourteen rabbits were enrolled to establish cerebral edema model and the 24 h real-time monitoring experiments were carried out for algorithm verification. RESULTS: The proposed Ab-CPE algorithm was able to detect cerebral edema with a sensitivity of 94.1% and specificity of 95.4%. Also, in the early stage, it can detect cerebral edema with a sensitivity of 85.0% and specificity of 87.5%. Moreover, the Ab-CPE algorithm was able to distinguish between acute and chronic phase of cerebral edema with a sensitivity of 85.0% and specificity of 91.0%. CONCLUSION: The proposed Ab-CPE algorithm is suitable for multi-frequency characteristic analysis. Combined with this algorithm, the electromagnetic induction method has an excellent performance on the detection and monitoring of cerebral edema.


Assuntos
Edema Encefálico , Algoritmos , Animais , Edema Encefálico/diagnóstico , Fenômenos Eletromagnéticos , Coelhos
5.
Biomed Eng Online ; 19(1): 83, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176808

RESUMO

BACKGROUND: As a serious clinical disease, ischemic stroke is usually detected through magnetic resonance imaging and computed tomography. In this study, a noninvasive, non-contact, real-time continuous monitoring system was constructed on the basis of magnetic induction phase shift (MIPS) technology. The "thrombin induction method", which conformed to the clinical pathological development process of ischemic stroke, was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS measurement, a "symmetric cancellation-type" magnetic induction sensor was used to improve the sensitivity and antijamming capability of phase detection. METHODS: A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the experimental group and five in the control group). Brain tissues were taken from seven rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal model. RESULTS: The nonparametric independent-sample Wilcoxon rank sum test showed significant differences (p < 0.05) between the experimental group and the control group in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and then an increasing trend in the experimental group, which may reflect the pathological development process of cerebral ischemic stroke. Moreover, TTC staining results showed that the focal cerebral infarction area increased with the development of time CONCLUSIONS: Our experimental study indicated that the MIPS technology has a potential ability of differentiating the development process of cytotoxic edema from that of vasogenic edema, both of which are caused by cerebral ischemia.


Assuntos
Hemorragia Cerebral/fisiopatologia , Condutividade Elétrica , Fenômenos Magnéticos , Monitorização Fisiológica/métodos , Doença Aguda , Animais , Coelhos , Fatores de Tempo
6.
Biomed Eng Online ; 16(1): 63, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558773

RESUMO

BACKGROUND: The major therapy for ischemic stroke is thrombolytic treatment, but severe consequences occur when this method is used to treat hemorrhagic stroke. Currently, computed tomography and magnetic resonance imaging are used to differentiate between two types of stroke, but these two methods are ineffective for pre-hospital care. METHODS: We developed a new brain diagnostic device for rabbits based on electromagnetic induction to non-invasively differentiate two types of stroke. The device includes two coils and a phase difference measurement system that detects the magnetic inductive phase shift (MIPS) value to reflect the tissue's condition. The hemorrhage model was established through the injection of autologous blood into the internal capsule of a rabbit's brain. Ischemia was induced in the brain of a rabbit by bilateral carotid artery occlusion. Two types of animal models were measured with our device. RESULTS: The MIPS value gradually decreased with increasing injected blood and increased with ischemia time. The MIPS changes induced by the two types of strokes were exact opposites, and the absolute values of MIPS variation in the hemorrhagic and the ischemic groups were significantly larger than those of the normal control group (P < 0.05). CONCLUSIONS: The tested technique can differentiate ischemic stroke from hemorrhagic stroke on rabbit brain in a non-invasive, continuous, and bulk monitoring manner by using a simple and inexpensive apparatus.


Assuntos
Isquemia Encefálica/complicações , Hemorragia Cerebral/complicações , Equipamentos para Diagnóstico , Fenômenos Magnéticos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Animais , Diagnóstico Diferencial , Estudos de Viabilidade , Coelhos
7.
Sensors (Basel) ; 17(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282851

RESUMO

Cerebral edema is a common disease, secondary to craniocerebral injury, and real-time continuous monitoring of cerebral edema is crucial for treating patients after traumatic brain injury. This work established a noninvasive and noncontact system by monitoring the magnetic induction phase shift (MIPS) which is associated with brain tissue conductivity. Sixteen rabbits (experimental group n = 10, control group, n = 6) were used to perform a 24 h MIPS and intracranial pressure (ICP) simultaneously monitored experimental study. For the experimental group, after the establishment of epidural freeze-induced cerebral edema models, the MIPS presented a downward trend within 24 h, with a change magnitude of -13.1121 ± 2.3953°; the ICP presented an upward trend within 24 h, with a change magnitude of 12-41 mmHg. The ICP was negatively correlated with the MIPS. In the control group, the MIPS change amplitude was -0.87795 ± 1.5146 without obvious changes; the ICP fluctuated only slightly at the initial value of 12 mmHg. MIPS had a more sensitive performance than ICP in the early stage of cerebral edema. These results showed that this system is basically capable of monitoring gradual increases in the cerebral edema solution volume. To some extent, the MIPS has the potential to reflect the ICP changes.


Assuntos
Edema Encefálico , Animais , Encéfalo , Pressão Intracraniana , Monitorização Fisiológica , Fenômenos Físicos , Coelhos
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(2): 440-5, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26211268

RESUMO

The real-time monitoring of cerebral hemorrhage can reduce its disability and fatality rates greatly. On the basis of magnetic induction phase shift, we in this study used filter and amplifier hardware module, NI-PXI data-acquisition system and LabVIEW software to set up an experiment system. We used Band-pass sample method and correlation phase demodulation algorithm in the system. In order to test and evaluate the performance of the system, we carried out saline simulation experiments of brain hemorrhage. We also carried out rabbit cerebral hemorrhage experiments. The results of both saline simulation and animal experiments suggested that our monitoring system had a high phase detection precision, and it needed only about 0.030 4s to finish a single phase shift measurement, and the change of phase shift was directly proportional to the volume of saline or blood. The experimental results were consistent with theory. As a result, this system has the ability of real-time monitoring the progression of cerebral hemorrhage precisely, with many distinguished features, such as low cost, high phase detection precision, high sensitivity of response so that it has showed a good application prospect.


Assuntos
Hemorragia Cerebral/diagnóstico , Magnetismo , Algoritmos , Animais , Sistemas Computacionais , Coelhos , Software
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(3): 569-74, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26485980

RESUMO

This study was aimed to improve the sensitivity of magnetic induction phase shift detection system for cerebral hemorrhage. In the study, a cerebral hemorrhage model with 13 rabbits was established by injection of autologous blood and the cerebral hemorrhage was detected by utilizing magnetic induction phase shift spectroscopy (MIPSS) detection method under the feature band. Sixty five groups of phase shift spectroscopy data were obtained. According to the characteristics of cerebral hemorrhage phase shift spectroscopy under the feature hand, an effective method, B-F distribution, to diagnose the severity of cerebral hemorrhage was designed. The results showed that using MIPSS detection method under feature band, the phase shift obviously growed with increase of injection volume of autologous blood, and the phase shift induced by a 3-mL injection reached -7.750 3 degrees ± 1.420 4 degrees. B-F distribution could effectively diagnose the severity of cerebral hemorrhage. It can be concluded that the sensitivity of the cerebral hemorrhage magnetic induction detection system is improved by one order of magnitude with the MIPSS detection method under the feature band.


Assuntos
Hemorragia Cerebral/diagnóstico , Magnetismo , Análise Espectral/métodos , Animais , Fenômenos Magnéticos , Coelhos
10.
J Phys Chem Lett ; 15(4): 1089-1096, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261607

RESUMO

The catalytic activity of single-atom catalysts (SACs) is crucially affected by the actual ligand configurations under the reaction condition; thus, carefully considering the reaction condition is crucial for the theoretical design of SACs. With single metal atoms supported by g-C3N4 as a model system, a self-consistent screening framework is proposed for the theoretical design of SACs with respect to the nitrogen reduction reaction (NRR). Pourbaix diagrams are constructed on the basis of various co-adsorption configurations of N2, H, and OH. Possible stable configurations containing N2 under the expected reaction condition are considered to obtain the limiting potential of NRR, and the stability of the configuration at the calculated UL is rechecked. With this framework, AC stacking of double-layer g-C3N4-supported Nb and AA stacking and AB stacking of double-layer g-C3N4-supported W are predicted to exhibit superior NRR activity with UL values of -0.36, -0.45, and -0.52 V, respectively. This procedure can be widely applied to the screening of SACs for electrocatalytic reactions.

11.
J Phys Chem Lett ; 14(18): 4185-4191, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37114901

RESUMO

Electrocatalytic reduction of nitrate (NO3RR) to synthesize ammonia (NH3) can effectively degrade nitrate while producing a valuable product. By utilizing density functional theory calculations, we investigate the potential catalytic performance of a range of single transition-metal (TM) atoms supported on nitrogenated holey doped graphene (g-C2N) (TM/g-C2N) for the reduction of nitrates to NH3. Based on the screening procedure, Zr/g-C2N and Hf/g-C2N are predicted as potential electrocatalysts for the NO3RR with limiting potential (UL) values of -0.28 and -0.27 V, respectively. The generation of byproducts such as dioxide (NO2), nitric oxide (NO), and nitrogen (N2) is hindered on Zr/g-C2N and Hf/g-C2N due to the high energy cost. The NO3RR activity of TM/g-C2N is closely related to the adsorption free energy of NO3-. The study not only proposes a competent electrocatalyst for enhancing NO3RR in ammonia synthesis but also provides a comprehensive understanding of the NO3RR mechanism.

12.
Med Phys ; 50(4): 2565-2576, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36433681

RESUMO

BACKGROUND: Magnetic-induction phase shift (MIPS) was rarely used in vivo and clinically because of low sensitivity and nonquantitative detection. The conventional single excitation coil and single detection coil (single coil-coil) generates divergent excitation magnetic field, resulting in different sensitivity of different object positions. PURPOSE: To improve the sensitivity and linearity of MIPS and object volume to realize quantitative detection, a novel sensor system was proposed. METHODS: The novel sensor system adopted uniform rotating magnetic field replacing the divergent magnetic field for the first time integrated with primary field cancellation. The uniform rotating magnetic field was generated by a birdcage coil excited by two orthogonal current; the primary field cancellation was realized by a specially arranged solenoid receiver coil installed co-axially with the birdcage coil detecting the z, not x and y-component of the secondary magnetic field. RESULTS: The saltwater simulation experiment showed that MIPS changed high linearity with the injection volume of all four different conductivity solutions. The experimental results of rabbit cerebral hemorrhage (CH) revealed that with injected blood volume increased to 3 ml, the MIPS linearly decreased to -1.916°, which was 5.5 times higher than that of the single coil-coil method. CONCLUSION: Compared with the single coil-coil method, this novel detection system was more sensitive and linearly correlated for the detection of bleeding volume. It provided the probability of quantitative detection of the CH volume and a series of brain-content diseases.


Assuntos
Hemorragia Cerebral , Campos Magnéticos , Animais , Coelhos , Hemorragia Cerebral/diagnóstico , Simulação por Computador , Imagens de Fantasmas , Fenômenos Físicos , Imageamento por Ressonância Magnética/métodos
13.
Front Bioeng Biotechnol ; 11: 1082254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911185

RESUMO

Introduction: Mechanical properties of biological tissue are important for numerical simulations. Preservative treatments are necessary for disinfection and long-term storage when conducting biomechanical experimentation on materials. However, few studies have been focused on the effect of preservation on the mechanical properties of bone in a wide strain rate. The purpose of this study was to evaluate the influence of formalin and dehydration on the intrinsic mechanical properties of cortical bone from quasi-static to dynamic compression. Methods: Cube specimens were prepared from pig femur and divided into three groups (fresh, formalin, and dehydration). All samples underwent static and dynamic compression at a strain rate from 10-3 s-1 to 103 s-1. The ultimate stress, ultimate strain, elastic modulus, and strain-rate sensitivity exponent were calculated. A one-way ANOVA test was performed to determine if the preservation method showed significant differences in mechanical properties under at different strain rates. The morphology of the macroscopic and microscopic structure of bones was observed. Results: The results show that ultimate stress and ultimate strain increased as the strain rate increased, while the elastic modulus decreased. Formalin fixation and dehydration did not affect elastic modulus significantly whereas significantly increased the ultimate strain and ultimate stress. The strain-rate sensitivity exponent was the highest in the fresh group, followed by the formalin group and dehydration group. Different fracture mechanisms were observed on the fractured surface, with fresh and preserved bone tending to fracture along the oblique direction, and dried bone tending to fracture along the axial direction. Discussion: In conclusion, preservation with both formalin and dehydration showed an influence on mechanical properties. The influence of the preservation method on material properties should be fully considered in developing a numerical simulation model, especially for high strain rate simulation.

14.
Acta Bioeng Biomech ; 24(4): 31-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37341047

RESUMO

PURPOSE: The purpose of this work was to understand the biomechanical response and injury risk of thorax and abdomen of vehicle front seat occupants caused by seat belt load under different frontal crash pulses. METHODS: A vehicle-seat-occupant subsystem finite element (FE) model was developed using the a assembly of vehicle front seat and seat belt together with the THUMS (Total Human body Model for Safety) AM50 (50th% Adult Male) occupant model. Then the typical vehicle frontal crash pulses from different impact scenarios were applied to the vehicle-seat-occupant subsystem FE model, and the predictions from the occupant model were analyzed. RESULTS: The modeling results indicate that the maximum sternal compression of the occupant caused by seat belt load is not sensitive to the peek of the crash pulse but sensitive to the energy contained by the crash pulse in the phrase before seat belt load reaching its limit. Injury risk analysis implies that seat belt load of the four crash scenarios considered in the current work could induce a high thorax AIS2+ injury risk (>80%) to the occupants older than 70 years, and a potential injury risk to the spleen. CONCLUSIONS: The findings suggest that control of the energy in the first 75 ms of the crash pulse is crucial for vehicle safety design, and thorax tolerance of the older population and spleen injury prevention are the key considerations in developing of seat belt system.


Assuntos
Acidentes de Trânsito , Cintos de Segurança , Adulto , Masculino , Humanos , Fenômenos Biomecânicos , Tórax/fisiologia , Abdome
15.
Front Public Health ; 10: 972948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438283

RESUMO

Background: Road traffic safety has considerably improved in China. However, the changes may differ in the economically backward and altitude higher western region. This study aims to investigate changes in the occurrence and severity of traffic casualties in western China and illuminate several key causal factors. Materials and methods: Traffic accident data from the Annual Traffic Accident Statistics Report combined with population and vehicle data from the China Statistics Bureau between 2009 and 2019, were retrospectively analyzed. Traffic accident numbers, fatalities, human injury (HI), case fatality rates (CFR), mortality per 100,000 population (MRP), and mortality per 10,000 vehicles (MRV) were compared between the western and eastern regions. The HI, CFR, MRV, and MRP between the four groups based on the altitude of cities, below 500 meters, 500 to 1,500 meters, 1,500 to 3,000 meters, and over 3,000 meters, were compared using one-way analysis of variance. One hundred and seventy-eight cases of extremely serious traffic accidents were further analyzed in terms of accident occurrence time, vehicle type, road grade, road shape, accident pattern, and accident reason. The differences of accident characteristics between the eastern and western regions were compared using the chi-square test. Results: The number of traffic accidents and fatalities decreased in low-altitude areas in western China. However, there was a significant increasing trend in the high altitude area. The HI, CFR, MRV, and MRP were higher in the western region than that in the eastern and national. Those accident indicators tended to increase with increasing altitude. And there were statistically significant differences (p < 0.05) among groups from different altitudes. Chi-square test results show that there are statistically significant differences (p < 0.05) in term of road grade, road shape, accident pattern between eastern and western. Low-grade roads, combined curved and sloping roads, and rollover were significant features associated with traffic accidents in the western region. Bad roads were the main cause of rollover accidents in western China, which will lead to more serious casualties. Over speeding, overloading, bad weather, vehicle failure, and driver error were the top five accident causes. Conclusion: Traffic accidents are increasing in high-altitude areas of western China, and they lead to more severe casualties. The characteristics of serious traffic accidents in this part of the country differ from those of the eastern regions. Improving road safety facilities, restrictions of speed, and improving medical treatment at accident scenes may be effective measures to reduce traffic accidents related injuries in the western region.


Assuntos
Acidentes de Trânsito , Veículos Automotores , Humanos , Estudos Retrospectivos , China/epidemiologia , Tempo (Meteorologia)
16.
ACS Nano ; 16(5): 7755-7771, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35491982

RESUMO

The inability of commercial personal protective equipment (PPE) to inactivate microbes in the droplets/aerosols they intercept makes used PPE a potential source of cross-contamination. To make PPE spontaneously and continuously antimicrobial, we incorporate PPE with oxidase-like catalysts, which efficiently convert O2 into reactive oxygen species (ROS) without requiring any externally applied stimulus. Using a single-atom catalyst (SAC) nanoparticle containing atomically dispersed copper atoms as the reactive centers (Cu-SAC) and a silver-palladium bimetallic alloy nanoparticle (AgPd0.38) as models for oxidase-like catalysts, we show that the incorporation of oxidase-like catalysts enables PPE to inactivate bacteria in the droplets/aerosols they intercept without requiring any externally applied stimulus. Notably, this approach works both for PPE that are fibrous and woven such as a commercial KN95 facial respirator and for those made of solid plastics such as an apron. This work suggests a feasible and global approach for preventing PPE from spreading infectious diseases.


Assuntos
Anti-Infecciosos , Equipamento de Proteção Individual , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Oxirredutases , Pessoal de Saúde , Aerossóis , Anti-Infecciosos/farmacologia
17.
Technol Health Care ; 29(1): 111-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32280073

RESUMO

BACKGROUND: Real-time clinical monitoring of cerebral edema (CE) is of great importance and requires continuously improved and optimized measurement hardware. METHODS: A new excitation source with higher frequency stability and wide output power range is presented in this work. The proposed excitation source is small in size and easy to integrate. The output power range of excitation signal used is 1.5 ∼ 33 dBm with a reference signal of 9 ∼ 11 dBm, and the phase shift stability of the excitation signal and reference signal reach 10-7 within 20 min. RESULTS: When normal saline (0.9%, 10 mL, 20 mL, 30 mL, 40 mL, and 50 mL) is injected into a human head phantom model, the magnetic induction phase shift (MIPS) changes from 252.78 ± 7.61 degrees to 252.40 ± 7.77 degrees. The MIPS signal shows a downward trend with increasing volume, indicating that MIPS can reflect the volume change of the measured object. Moreover, a more dramatic trend is visible when the solution volume increases from 0 to 10 mL and from 40 to 50 mL. This occurs where the volume increment is closer to the upper and lower sides of the over-ear sensor, where the magnetic field is strongest. CONCLUSION: The phantom simulation experiments illustrate that the proposed MIPS detection system based on a signal source can detect the real-time progress of CE. Advantages of low cost, high precision, and high sensitivity endow this system with excellent application prospects.


Assuntos
Edema Encefálico , Humanos , Magnetismo , Monitorização Fisiológica
18.
PeerJ ; 9: e10583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505798

RESUMO

Intracranial hemorrhage (ICH) carrying extremely high morbidity and mortality can only be detected by CT, MRI and other large equipment, which do not meet the requirements for bedside continuous monitoring and pre-hospital first aid. Since the biological tissues have different dielectric properties except the pure resistances, and the permittivity of blood is far larger than that of other brain tissues, here a new method was used to detect events of change at the blood/tissue volume ratio by measuring of the head permittivity. In this paper, we use a self-made parallel plate capacitor to detect the intracranial hemorrhage in rabbits by contactless capacitance measurement. The sensitivity of the parallel-plate capacitor was also evaluated by the physical solution measurement. The results of physical experiments show that the capacitor can distinguish between three solutions with different permittivity, and the capacitance increased with the increase of one solution between two plates. At the next step in the animal experiment, the capacitance changes caused by 2 ml blood injection into the rabbit brain were measured. The results of animal experiments show that the capacitance was almost unchanged before and after the blood injection, but increased with the increase of the blood injection volume. The increase of capacitance caused by blood injection was much larger than that before and after blood injection (P < 0.01). The experiments show that this method is feasible for the detection of intracranial hemorrhage in a non-invasive and contactless manner.

19.
Physiol Meas ; 41(9): 095004, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32759483

RESUMO

OBJECTIVE: This study aimed to perform experiments to investigate the change trend in brain magnetic induction phase shift (MIPS) during hemorrhagic shock of different degrees of severity and to find the correlation between brain MIPS value and commonly used physiological indicators for detecting shock so as to explore a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock. APPROACH: The self-developed MIPS detection system was used to monitor the brain MIPS value in the whole process of hemorrhagic shock models of rabbits with different degrees of severity (control, mild, moderate, and severe) of shock in real time. Meanwhile, common physiological parameters, including arterial blood lactate (ABL), mean arterial pressure (MAP), heart rate (HR),core body temperature (CBT), regional cerebral blood flow (rCBF), and electroencephalogram (EEG), were also evaluated. MAIN RESULTS: The findings suggested that the brain MIPS value showed a downward trend in the shock process, and the decline degree of the MIPS value positively correlated with the severity of shock. Moreover, it showed a good detection and resolution ability in time/process and severity (P < 0.05). The MIPS values significantly correlated with ABL (P < 0.01), CBT (P < 0.01), and EEG (P < 0.05) at all four shock levels; with MAP (P < 0.05) and rCBF (P < 0.05) in the control, moderate, and severe groups; and with HR (P < 0.01) only in the severe group. SIGNIFICANCE: The results demonstrated that the brain MIPS value has the capability of detecting hemorrhagic shock. The MIPS technique is a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock.


Assuntos
Encéfalo , Circulação Cerebrovascular , Choque Hemorrágico , Animais , Encéfalo/diagnóstico por imagem , Fenômenos Magnéticos , Perfusão , Coelhos , Choque Hemorrágico/diagnóstico
20.
PeerJ ; 8: e10079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083136

RESUMO

Cerebral edema (CE) is a non-specific pathological swelling of the brain secondary to any type of neurological injury. The real-time monitoring of focal CE mostly found in early stage is of great significance to reduce mortality and disability. Magnetic Induction Phase Shift (MIPS) is expected to achieve non-invasive continuous monitoring of CE. However, most existing MIPS sensors are made of hard materials which makes it difficult to accurately retrieve CE information. In this article, we designed a conformal two-coil structure and a single-coil structure, and studied their sensitivity map using finite element method (FEM). After that, the conformal MIPS sensor that is preferable for local CE monitoring was fabricated by flexible printed circuit (FPC). Next, physical experiments were conducted to investigate its performance on different levels of simulated CE solution volume, measurement distance, and bending. Subsequently, 14 rabbits were chosen to establish CE model and another three rabbits were selected as controls. The 24-hour MIPS real-time monitoring experiments was carried out to verify that the feasibility. Results showed a gentler attenuation trend of the conformal two-coil structure, compared with the single-coil structure. In addition, the novel flexible conformal MIPS sensor has a characteristic of being robust to bending according to the physical experiments. The results of animal experiments showed that the sensor can be used for CE monitoring. It can be concluded that this flexible conformal MIPS sensor is desirable for local focusing measurement of CE and subsequent multidimensional information extraction for predicting model. Also, it enables a much more comfortable environment for long-time bedside monitoring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa