Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biochem Biophys Res Commun ; 714: 149973, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657444

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse inflammatory lung injury with a high mortality rate. Mesenchymal stromal cells (MSC) are pluripotent adult cells that can be extracted from a variety of tissues, including the lung. Lung-resident MSC (LR-MSC) located around vascular vessels and act as important regulators of lung homeostasis, regulating the balance between lung injury and repair processes. LR-MSC support the integrity of lung tissue by modulating immune responses and releasing trophic factors. Studies have reported that the STING pathway is involved in the progression of lung injury inflammation, but the specific mechanism is unclear. In this study, we found that STING deficiency could ameliorate lipopolysaccharides (LPS)-induced acute lung injury, STING knockout (STING KO) LR-MSC had an enhanced treatment effect on acute lung injury. STING depletion protected LR-MSC from LPS-induced apoptosis. RNA-sequencing and Western blot results showed that STING KO LR-MSC expressed higher levels of MSC immunoregulatory molecules, such as Igfbp4, Icam1, Hgf and Cox2, than WT LR-MSC. This study highlights that LR-MSC have a therapeutic role in acute lung injury, and we demonstrate that STING deficiency can enhance the immunomodulatory function of LR-MSC in controlling lung inflammation. Thus, STING can be used as an intervention target to enhance the therapeutic effect of MSC.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Pulmão , Proteínas de Membrana , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/deficiência , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Camundongos , Camundongos Knockout , Apoptose , Masculino
2.
Mol Cell ; 64(1): 105-119, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666593

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an essential DNA virus sensor that triggers type I interferon (IFN) signaling by producing cGAMP to initiate antiviral immunity. However, post-translational regulation of cGAS remains largely unknown. We report that K48-linked ubiquitination of cGAS is a recognition signal for p62-depdendent selective autophagic degradation. The induction of TRIM14 by type I IFN accelerates cGAS stabilization by recruiting USP14 to cleave the ubiquitin chains of cGAS at lysine (K) 414. Knockout of TRIM14 impairs herpes simplex virus type 1 (HSV-1)-triggered antiviral responses in a cGAS-dependent manner. Due to impaired type I IFN production, Trim14-/- mice are highly susceptible to lethal HSV-1 infection. Taken together, our findings reveal a positive feedback loop of cGAS signaling generated by TRIM14-USP14 and provide insights into the crosstalk between autophagy and type I IFN signaling in innate immunity.


Assuntos
Herpes Simples/genética , Imunidade Inata , Nucleotidiltransferases/genética , Processamento de Proteína Pós-Traducional , Proteína Sequestossoma-1/genética , Transativadores/genética , Ubiquitina Tiolesterase/genética , Animais , Autofagia/efeitos dos fármacos , Retroalimentação Fisiológica , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/mortalidade , Herpes Simples/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Knockout , Nucleotidiltransferases/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Sequestossoma-1/imunologia , Transdução de Sinais , Análise de Sobrevida , Transativadores/imunologia , Proteínas com Motivo Tripartido , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/deficiência
3.
Mol Cell ; 64(2): 267-281, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27692986

RESUMO

TBK1 is a component of the type I interferon (IFN) signaling pathway, yet the mechanisms controlling its activity and degradation remain poorly understood. Here we report that USP38 negatively regulates type I IFN signaling by targeting the active form of TBK1 for degradation in vitro and in vivo. USP38 specifically cleaves K33-linked poly-ubiquitin chains from TBK1 at Lys670, and it allows for subsequent K48-linked ubiquitination at the same position mediated by DTX4 and TRIP. Knockdown or knockout of USP38 increases K33-linked ubiquitination, but it abrogates K48-linked ubiquitination and degradation of TBK1, thus enhancing type I IFN signaling. Our findings identify an essential role for USP38 in negatively regulating type I IFN signaling, and they provide insights into the mechanisms by which USP38 regulates TBK1 ubiquitination through the NLRP4 signalosome.


Assuntos
Imunidade Inata , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Transdução de Sinais/imunologia , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/imunologia , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Knockout , Fosforilação , Poliubiquitina/genética , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas/genética , Proteínas/imunologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/imunologia , Ubiquitinação , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/imunologia
4.
Biochem Biophys Res Commun ; 652: 88-94, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36841099

RESUMO

Acetaminophen (APAP) overdose is the most common cause for acute liver failure (ALF) in the developed countries, with limited treatment options. Piezo1 is a mechanosensitive cation channel. We found that APAP caused upregulation of Piezo1 in both an APAP-induced acute liver injury (ALI) animal model and a mouse hepatocyte cell line AML12. Activation of Piezo1 by its activator Yoda1 reduced APAP-induced hepatotoxicity and ROS level. Mechanistically, activation of Piezo1 led to accumulation of the antioxidant regulator Nrf2 and upregulation of its target genes Nqo1 and Gsta1, while knockdown of Piezo1 downregulated this pathway. Finally, injection of Yoda1 decreased serum AST and ALT levels, reduced cell death and rescued liver injury in the APAP-induced ALI mouse model. Our findings suggested a previously undiscovered protective role of Piezo1 in APAP-induced ALI, which might shed light on a new therapeutic target for this disease.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Canais Iônicos/metabolismo
5.
Biochem Biophys Res Commun ; 623: 181-188, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921710

RESUMO

Type I interferon pathway is a crucial component of innate immune signaling upon pathogen infection or endogenous instability. An imbalance of type I interferon can lead to many diseases, such as autoimmune diseases and inflammatory diseases. Meanwhile, the side effects of clinical drugs on type I interferon signaling may result in impaired outcomes in clinical treatment, especially in cancer immunotherapy which is associated with type I interferon signaling. Here, we found that sorafenib, an FDA-approved drug for HCC chemotherapy, suppresses both DNA- and RNA-sensing mediated type I interferon pathway. Mechanistically, sorafenib treatment induces the autophagic degradation of MAVS, cGAS, TBK1, and IRF3, and attenuates the signaling transduction. In addition, sorafenib also inhibits the recruiting of STING or MAVS with TBK1 and IRF3. This work reveals the negative role of sorafenib in the regulation of type I interferon pathway. Sorafenib treatment is not only a potential drug for autoimmune disease and inflammation diseases, but also needs to be noticed in HCC chemotherapy.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases , Sorafenibe/farmacologia
6.
J Immunol ; 204(6): 1499-1507, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32024699

RESUMO

As an important effector in response to various intracellular or extracellular stimuli, the NF-κB family extensively participates in a wide spectrum of biological events, and its dysregulation may result in many pathological conditions, such as microbial infection, tumor progression, and neurodegenerative disorders. Previous investigations showed that multiple types of ubiquitination play critical roles in the modulation of the NF-κB signaling pathway, yet the molecular mechanisms are still poorly understood. In the current study, we identified TRIM25, an E3 ubiquitin ligase, as a novel positive regulator in mediating NF-κB activation in human embryonic kidney 293T (HEK293T), HeLa cells, THP-1 cells, and PBMCs. The expression of TRIM25 promoted TNF-α-induced NF-κB signaling, whereas the knockdown had the opposite effect. Furthermore, TRIM25 interacted with TRAF2 and enhanced the K63-linked polyubiquitin chains attached to TRAF2. Moreover, TRIM25 bridged the interaction of TRAF2 and TAK1 or IKKß. To our knowledge, our study has identified a previously unrecognized role for TRIM25 in the regulation of NF-κB activation by enhancing the K63-linked ubiquitination of TRAF2.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Leucócitos Mononucleares , Lisina/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Cultura Primária de Células , Células THP-1 , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/imunologia
7.
EMBO Rep ; 18(12): 2160-2171, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097393

RESUMO

MAVS signalosome plays an important role in RIG-I-like receptor (RLR)-induced antiviral signaling. Upon the recognition of viral RNAs, RLRs activate MAVS, which further recruits TRAF6 and other signaling proteins to initiate type I interferon (IFN) activation. MAVS signalosome also regulates virus-induced apoptosis to limit viral replication. However, the mechanisms that control the activity of MAVS signalosome are still poorly defined. Here, we report NLRP11, a Nod-like receptor, is induced by type I IFN and translocates to mitochondria to interact with MAVS upon viral infection. Using MAVS as a platform, NLRP11 degrades TRAF6 to attenuate the production of type I IFNs as well as virus-induced apoptosis. Our findings reveal the regulatory role of NLRP11 in antiviral immunity by disrupting MAVS signalosome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas NLR/metabolismo , Vírus Sendai/fisiologia , Transdução de Sinais , Células THP-1 , Fator 6 Associado a Receptor de TNF/metabolismo , Replicação Viral
8.
Cell Biochem Biophys ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809352

RESUMO

Temozolomide (TMZ) stands as the primary chemotherapeutic drug utilized in clinical glioma treatment, particularly for high-grade glioblastoma (GBM). However, the emergence of TMZ resistance in GBM poses a significant hurdle to its clinical efficacy. Our objective was to elucidate the role of deubiquitinating enzymes (DUBs) in GBM cell resistance to TMZ. We employed the broad-spectrum DUBs inhibitor G5 to investigate the function of DUBs in TMZ cytotoxicity against GBM cells. Eighty-two GBM cell lines with specified DUBs knockout were generated and subjected to CCK-8 assays to assess cell proliferation and TMZ resistance. Furthermore, the association between DUBs and TMZ resistance in GBM cells, along with the modulation of autophagic flux, was examined. The pan-DUBs inhibitor G5 demonstrated the ability to induce cell death and enhance TMZ toxicity in GBM cells. Subsequently, we identified potential DUBs involved in regulating GBM cell proliferation and TMZ resistance. The impact of DUBs knockout on TMZ cytotoxicity was found to be associated with their regulation of TMZ-induced autophagy. In summary, our study provides primary insights into the role of DUBs in GBM cell proliferation and TMZ resistance, and contributes to a deeper understanding of the complex function of DUBs genes underlying TMZ resistance in GBM cells.

9.
Genomics ; 99(5): 315-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425900

RESUMO

Freshwater planarian flatworm possesses an extraordinary ability to regenerate lost body parts after amputation; it is perfect organism model in regeneration and stem cell biology. Recently, small RNAs have been an increasing concern and studied in many aspects, including regeneration and stem cell biology, among others. In the current study, the large-scale cloning and sequencing of sRNAs from the intact and regenerative planarian Dugesia japonica are reported. Sequence analysis shows that sRNAs between 18nt and 40nt are mainly microRNAs and piRNAs. In addition, 209 conserved miRNAs and 12 novel miRNAs are identified. Especially, a better screening target method, negative-correlation relationship of miRNAs and mRNA, is adopted to improve target prediction accuracy. Similar to miRNAs, a diverse population of piRNAs and changes in the two samples are also listed. The present study is the first to report on the important role of sRNAs during planarian Dugesia japonica regeneration.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Planárias/genética , RNA de Helmintos/genética , Pequeno RNA não Traduzido/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genoma Helmíntico/genética , MicroRNAs/genética , Dados de Sequência Molecular , Planárias/fisiologia , RNA Interferente Pequeno/genética , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Autophagy ; 19(3): 1026-1027, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35944095

RESUMO

The selective macroautophagy/autophagy pathway is an important pathway of protein degradation, regulating signal transduction pathways via selective degradation of certain signaling complexes. TBK1 functions as a key protein in innate immunity or metabolic-associated fatty liver disease (MAFLD); however, the degradation of TBK1 has not been fully investigated. Recently, we have found that HNF1A functions as a novel cargo receptor to bridge TBK1 and MAP1LC3/LC3, hence promoting the degradation of TBK1 and regulating antiviral innate immunity and MAFLD.


Assuntos
Autofagia , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Imunidade Inata , Fosforilação
11.
Genes Dis ; 10(4): 1596-1612, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397525

RESUMO

Non-alcoholic steatohepatitis (NASH), a progressive form of non-alcoholic fatty liver disease (NAFLD), is characterised by chronic liver inflammation, which can further progress into complications such as liver cirrhosis and NASH-associated hepatocellular carcinoma (HCC) and therefore has become a growing health problem worldwide. The type I interferon (IFN) signaling pathway plays a pivotal role in chronic inflammation; however, the molecular mechanisms underlying NAFLD/NASH from the perspective of innate immune response has not yet been fully explored. In this study, we elucidated the mechanisms of how innate immune response modulates NAFLD/NASH pathogenesis, and demonstrated that hepatocyte nuclear factor-1alpha (HNF1A) was suppressed and the type I IFN production pathway was activated in liver tissues of patients with NAFLD/NASH. Further experiments suggested that HNF1A negatively regulates the TBK1-IRF3 signaling pathway by promoting autophagic degradation of phosphorylated-TBK1, which constrains IFN production, thereby inhibiting the activation of type I IFN signaling. Mechanistically, HNF1A interacts with the phagophore membrane protein LC3 through its LIR-docking sites, and mutations of LIRs (LIR2, LIR3, LIR4, and LIRs) block the HNF1A-LC3 interaction. In addition, HNF1A was identified not only as a novel autophagic cargo receptor but also to specifically induce K33-linked ubiquitin chains on TBK1 at Lys670, thereby resulting in autophagic degradation of TBK1. Collectively, our study illustrates the crucial function of the HNF1A-TBK1 signaling axis in NAFLD/NASH pathogenesis via cross-talk between autophagy and innate immunity.

12.
Mol Biol Rep ; 39(3): 2653-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21713409

RESUMO

MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. miRNAs have been shown to play important roles in stem cell maintenance, cell fate determination, and differentiation. Planarians are capable of regenerating entire body plans from tiny fragments; this regenerative capacity is facilitated by a population of pluripotent stem cells known as neoblasts. Planarians have been a classic model system for the study of many aspects of stem cell biology. However, very limited knowledge on miRNA involved in this regulatory mechanism exists. This study profiles the expression of miRNAs in the normal and regenerative tissues of planarians using miRCURY LNA array technology. Thirteen miRNAs showed significant differences in expression between these two tissues. To further confirm our results, we examined the expression of two miRNAs by qRT-PCR. Results show that some known miRNAs may play key roles in the regulatory mechanisms of regeneration. Our findings can be utilized in future research on miRNA function.


Assuntos
MicroRNAs/genética , Planárias/genética , Células-Tronco Pluripotentes/metabolismo , Regeneração/genética , Animais , Biologia Computacional , Primers do DNA/genética , MicroRNAs/metabolismo , Análise em Microsséries , Planárias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Biochem Genet ; 50(1-2): 1-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21874588

RESUMO

MicroRNAs (miRNAs) (noncoding RNAs of 20-25 nucleotides) play important roles in the post-transcriptional regulation of gene expression in various eukaryotes and prokaryotes. Piwi-interacting RNAs function by combining with PIWI proteins to regulate protein synthesis and to stabilize mRNA, the chromatin framework, and genome structure. This study investigates the role of miRNAs in regeneration. A scrDNA library was constructed, and 17 noncoding RNAs from Eisenia fetida (an optimal model for the study of earthworm regeneration) were cloned and characterized. In addition, reverse transcription polymerase chain reaction was performed to analyze the expression of four small RNAs during different developmental stages. The expression levels of these RNAs in regenerating tissue were higher than in normal tissue, and the expression patterns of these small RNAs were unique during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Oligoquetos/genética , Animais , Clonagem Molecular , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/fisiologia , RNA Interferente Pequeno/genética , RNA não Traduzido , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Genomics ; 97(6): 364-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21333733

RESUMO

Planarians exhibit an extraordinary ability to regenerate lost body parts which is attributed to an abundance of pluripotent somatic stem cells called neoblasts. In this article, we report a transcriptome sequence of a Planaria subspecies Dugesia japonica derived by high-throughput sequencing. In addition, we researched transcriptome changes during different periods of regeneration by using a tag-based digital gene expression (DGE) system. Consequently, 11,913,548 transcriptome sequencing reads were obtained. Finally, these reads were eventually assembled into 37,218 unique unigenes. These assembled unigenes were annotated with various methods. Transcriptome changes during planarian regeneration were investigated by using a tag-based DGE system. We obtained a sequencing depth of more than 3.5million tags per sample and identified a large number of differentially expressed genes at various stages of regeneration. The results provide a fairly comprehensive molecular biology background to the research on planarian development, particularly with regard to its regeneration progress.


Assuntos
Perfilação da Expressão Gênica , Planárias/genética , Regeneração/genética , Animais , Mapeamento Cromossômico/métodos , Genes de Helmintos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta , Análise de Sequência de DNA/métodos
15.
Org Lett ; 24(31): 5693-5697, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921617

RESUMO

A Lewis-base-catalyzed three-component electrophilic thiofunctionalization of cyclopropene with phenol is developed to furnish various trisubstituted chromanes in high trans-diasteroselectivity. This metal-free protocol is easy to scale-up, offers a unique 2,2,3-substitution pattern, and delivers chromanes with diversified core substitution patterns. The unprecedented tolerance of strong electron-withdrawing substituents at the phenol renders the protocol indispensable to access the otherwise inaccessible chromane chemical space that is important for medicinal chemistry campaigns.

16.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002188

RESUMO

BACKGROUND: Emerging evidence indicates that the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) axis plays a pivotal role in intrinsic antitumor immunity. Previous studies demonstrate that the conventional chemotherapy agent, teniposide, effectively promotes the therapeutic efficacy of programmed cell death protein-1 antibody (PD-1 Ab) through robust cGAS-STING activation. Unfortunately, the cGAS expression of tumor cells is reported to be severely suppressed by the hypoxic status in solid tumor. Clinically, enhancing chemotherapy-induced, DNA-activated tumor STING signaling by alleviating tumor hypoxia might be one possible direction for improving the currently poor response rates of patients with hepatocellular carcinoma (HCC) to PD-1 Ab. METHODS: Teniposide was first screened out from several chemotherapy drugs according to their potency in inducing cGAS-STING signaling in human HCC cells. Teniposide-treated HCC cells were then cultured under hypoxia, normoxia or reoxygenation condition to detect change in cGAS-STING signaling. Next, oxaliplatin/teniposide chemotherapy alone or combined with hyperbaric oxygen (HBO) therapy was administered on liver orthotopic mouse tumor models, after which the tumor microenvironment (TME) was surveyed. Lastly, teniposide alone or combined with HBO was performed on multiple mouse tumor models and the subsequent anti-PD-1 therapeutic responses were observed. RESULTS: Compared with the first-line oxaliplatin chemotherapy, teniposide chemotherapy induced stronger cGAS-STING signaling in human HCC cells. Teniposide-induced cGAS-STING activation was significantly inhibited by hypoxia inducible factor 1α in an oxygen-deficient environment in vitro and the inhibition was rapidly removed via effective reoxygenation. HBO remarkably enhanced the cGAS-STING-dependent tumor type Ⅰ interferon and nuclear factor kappa-B signaling induced by teniposide in vivo, both of which contributed to the activation of dendritic cells and subsequent cytotoxic T cells. Combined HBO with teniposide chemotherapy improved the therapeutic effect of PD-1 Ab in multiple tumor models. CONCLUSIONS: By combination of two therapies approved by the Food and Drug Administration, we safely stimulated an immunogenic, T cell-inflamed HCC TME, leading to further sensitization of tumors to anti-PD-1 immunotherapy. These findings might enrich therapeutic strategies for advanced HCC andwe can attempt to improve the response rates of patients with HCC to PD-1 Ab by enhancing DNA-activated STING signaling through effective tumor reoxygenation.


Assuntos
Carcinoma Hepatocelular , Oxigenoterapia Hiperbárica , Neoplasias Hepáticas , Animais , Anticorpos , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Hipóxia , Neoplasias Hepáticas/tratamento farmacológico , Proteínas de Membrana , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxaliplatina , Oxigênio , Teniposídeo , Microambiente Tumoral , Estados Unidos
17.
Autophagy ; 18(4): 860-876, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34382907

RESUMO

Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.


Assuntos
Autofagia , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia/fisiologia , Fibroblastos/metabolismo , Guanosina Trifosfato , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Sirolimo
18.
Plant Cell Rep ; 30(8): 1443-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538102

RESUMO

Salidroside, the 8-O-ß-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.


Assuntos
Glucosídeos/biossíntese , Rhodiola/enzimologia , Tirosina Descarboxilase/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Clonagem Molecular , DNA Antissenso/genética , DNA Complementar/genética , DNA de Plantas/genética , Dados de Sequência Molecular , Fenóis , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Rhodiola/genética , Análise de Sequência de DNA
19.
Cell Death Discov ; 7(1): 374, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864819

RESUMO

Berberine (BBR) has been explored as a potential anti-liver fibrosis agent, but the underlying mechanisms are unknown. In the current study, we aimed to investigate the molecular mechanisms underlying the effect of BBR against liver fibrogenesis in thioacetamide (TAA) and carbon tetrachloride (CCl4) induced mouse liver fibrosis. In addition to i.p. injection with TAA or CCl4, mice in the treatment group received BBR intragastrically. Concurrently, combined with TAA and BBR treatment, mice in the inhibitor group were injected i.p. with ferrostatin-1 (Fer-1). Hepatic stellate cells (HSCs) were also used in the study. Our results showed that BBR obviously alleviated mouse liver fibrosis and restored mouse liver function; however, the pharmacological effects of BBR against liver fibrosis were significantly diminished by Fer-1 treatment. Mechanically, BBR impaired the autophagy-lysosome pathway (ALP) and increased cell reactive oxygen species (ROS) production in HSCs. ROS accelerated the breakdown of the iron-storage protein ferritin and sped up iron release from ferritin, which resulted in redox-active iron accumulation in HSCs. Lipid peroxidation and glutathione (GSH) depletion triggered by the Fenton reaction promoted ferroptosis and attenuated liver fibrosis. Furthermore, impaired autophagy enhanced BBR-mediated ferritin proteolysis to increase cellular ferrous overload via the ubiquitin-proteasome pathway (UPS) in HSCs and triggered HSC ferroptosis. Collectively, BBR alleviated liver fibrosis by inducing ferrous redox to activate ROS-mediated HSC ferroptosis. Our findings may be exploited clinically to provide a potential novel therapeutic strategy for liver fibrosis.

20.
Front Oncol ; 11: 711448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888230

RESUMO

Accumulating evidence shows a close association between various types of bile acids (BAs) and hepatocellular carcinoma (HCC), and they have been revealed to affect tumor immune response and progression mainly by regulating Farnesoid X receptor (FXR). Nevertheless, the roles of Norcholic acid(NorCA) in HCC progression remain unknown yet. In this study, herein we demonstrate that NorCA can promote HCC cell proliferation, migration and invasion through negatively regulating FXR. Additionally, NorCA can increase PD-L1 level on the surfaces of HCC cells and their exosomes, and NorCA-induced exosomes dramatically dampen the function of CD4+T cells, thereby inducing an immunosuppressive microenvironment. Meanwhile, a negative correlation between PD-L1 and FXR expression in human HCC specimens was identified, and HCC patients with FXRlowPD-L1high expression exhibit a rather dismal survival outcome. Importantly, FXR agonist (GW4064) can synergize with anti-PD-1 antibody (Ab) to inhibit HCC growth in tumor-bearing models. Taken together, NorCA can promote HCC progression and immune invasion by inhibiting FXR signaling, implying a superiority of the combination of FXR agonist and anti-PD-1 Ab to the monotherapy of immune checkpoint inhibitor in combating HCC. However, more well-designed animal experiments and clinical trials are warranted to further confirm our findings in future due to the limitations in our study.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa