RESUMO
To build up an identification method on cardiac glycosides in Taxillus chinensis and its Nerium indicum host, and evaluate the influence on medicine quality from host to T. chinensis, ultra-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass-mass spectrometry(UPLC-Q-TOF-MS/MS)was applied. The samples of T. chinensis(harvested from N. indicum)and its N. indicum host were collected in field. The samples of T. chinensis(harvested from Morus alba)and its M. alba host was taken as control substance. All samples were extracted by ultrasonic extraction in 70% ethanol. Chromatographic separation was performed on an ACQUITY UPLC HSS T3 C_(18)(2.1 mm×100 mm,1.8 µm)column at 40 â. Gradient elution was applied, and the mobile phase was consisted of 0.1% formic acid water and acetonitrile. The 0.5 µL of sample solution was injected and the flow rate of the mobile phase was kept at 0.6 mL·min~(-1) in each run. It was done to identify cardiac glycosides and explore the chemical composition correlation in T. chinensis and its N. indicum host by analyzing positive and negative ion mode mass spectrometry data, elemental composition, cardiac glycoside reference substance and searching related literatures. A total of 29 cardiac glycosides were identified, 28 of it belonged to N. indicum host, 5 belonged to T. chinensis(harvested from N. indicum host), none of cardiac glycoside was identified in T. chinensis(harvested from M. alba host). The result could provide a reference in evaluating the influence in T. chinensis medicine quality from host. It was rapid, accurate, and comprehensive to identify cardiac glycosides in T. chinensis and its N. indicum host by UPLC-Q-TOF-MS/MS.
Assuntos
Glicosídeos Cardíacos/análise , Medicamentos de Ervas Chinesas/química , Loranthaceae/química , Nerium/química , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos/análise , Espectrometria de Massas em TandemRESUMO
To evaluate the effect of the host plant on the quality of Loranthaceae species as medicinal raw material, ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was used to identify cardiac glycosides in Nerium indicum and its parasitic plant species Taxillus chinensis and Scurrula parasitica. Samples were collected from N. indicum and these parasites, while Morus alba and its parasite T. chinensis and Osmanthus fragrans and its parasite S. parasitica were used as controls. Based on mass spectrometry data and elemental composition analysis of positive and negative ion modes, in combination with standard cardiac glycosides and relevant literature, cardiac glycosides in N. indicum and its parasites T. chinensis and S. parasitica were identified, and their correlations were analyzed. A total of 29 cardiac glycosides were identified, among which 28 were found in N. indicum parasitized by T. chinensis; 25 cardiac glycosides were identified in the same host under attack by S. parasitica; five cardiac glycosides were identified in both T. chinensis and S. parasitica, which grew parasitically on N. indicum, whereas no cardiac glycosides were identified in M. alba parasitized by T. chinensis, or in O. fragrans parasitized by S. parasitica. We conclude that UPLC-Q-TOF-MS/MS technology can identify cardiac glycosides in N. indicum and parasites T. chinensis and S. parasitica rapidly, accurately, and thoroughly. N. indicum will transfer its own cardiac glycosides to its parasites through the special host-parasite interaction. Our results provide a reference basis for evaluating the influence of the host plant on the quality of medicinal compounds obtained from Loranthaceae species.