Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(20): 4030-4037, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38722760

RESUMO

The multiphoton ionization/dissociation dynamics of molecular sulfur (S2) in the ultraviolet range of 205-300 nm is studied using velocity map ion imaging (VMI). In this one-color experiment, molecular sulfur (S2) is generated in a pulsed discharge and then photodissociated by UV radiation. At the three-photon level, superexcited states are accessed via two different resonant states: the B3Σu- (v' = 8-11) valence states at the one-photon level and a Rydberg state at the two-photon level. Among the decay processes of these superexcited states, dissociation to electronically excited S atoms is dominant as compared to autoionization to ionic states S2+ (X2Πg) at wavelengths λ < 288 nm. The anisotropy parameter extracted from these images reflects the parallel character of these electronic transitions. In contrast, autoionization is found to be particularly efficient at S(1D) and S(1S) detection wavelengths around 288 nm. Information obtained from the kinetic energy distributions of S atoms has revealed the existence of vibrationally excited S2+ (X2Πg (v+ > 11)) that dissociates to ionic products following one-photon absorption. This work also reveals many interesting features of S2 photodynamics compared to those of electronically analogous O2.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38661192

RESUMO

In this work, the threshold photoionization cross sections from the excited states of lutetium and ytterbium atoms were investigated by the laser pump-probe scheme under the condition of saturated resonant excitation. We obtained the resonance enhanced multiphoton ionization spectra of the lutetium and ytterbium atoms of the lanthanide metals in the range of 307.50-312.50 nm and 265.00-269.00 nm, respectively; the photoionization cross sections of the 5d6s(1D)6p(2D05/2) and 5d6s(3D)6p(2P01/2) states of lutetium and the 4f13(2F0)5d6s2(J = 1) states of ytterbium above threshold regions (0.4-1.6 eV) were measured, and measured values ranged from 2.3 ± 0.2 to 17.7 ± 1.5 Mb.

3.
Opt Express ; 31(24): 40345-40351, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041338

RESUMO

For monitoring the extent of eutrophication in water, phosphorus (P) was detected by laser-induced breakdown spectroscopy (LIBS). A plasma amplification method was proposed and the filtered aerosol was guided to interact with the collinear laser in conjunction with a nebulizer, cyclonic spray chamber, and quartz tube. With this method, the length of the plasma was amplified from 5.27∼8.73 to 17.58 mm. Moreover, the limit of detection (LoD) values of P in water improved from 6.13∼17.75 to 3.60 ppm. Furthermore, the average relative error (REAV) values reduced from 10.23∼23.84 to 6.17%. The root mean square error of cross-validation (RMSECV) values decreased from 16.68∼64.29 to 3.24 ppm. This demonstrated that plasma amplification LIBS could improve the quantitative analysis performance of LIBS detection of trace phosphorus in water.

4.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675196

RESUMO

L-cysteine S-sulfate, Cys-SSO3H, and their derivatives play essential roles in biological chemistry and pharmaceutical synthesis, yet their intrinsic molecular properties have not been studied to date. In this contribution, the deprotonated anion [cysS-SO3]- was introduced in the gas phase by electrospray and characterized by size-selected, cryogenic, negative ion photoelectron spectroscopy. The electron affinity of the [cysS-SO3]• radical was determined to be 4.95 ± 0.10 eV. In combination with theoretical calculations, it was found that the most stable structure of [cysS-SO3]- (S1) is stabilized via three intramolecular hydrogen bonds (HBs); i.e., one O-H⋯⋯N between the -COOH and -NH2 groups, and two N-H⋯⋯O HBs between -NH2 and -SO3, in which the amino group serves as both HB acceptor and donor. In addition, a nearly iso-energetic conformer (S2) with the formation of an O-H⋯⋯N-H⋯⋯O-S chain-type binding motif competes with S1 in the source. The most reactive site of the molecule susceptible for electrophilic attacks is the linkage S atom. Theoretically predicted infrared spectra indicate that O-H and N-H stretching modes are the fingerprint region (2800 to 3600 cm-1) to distinguish different isomers. The obtained information lays out a foundation to better understand the transformation and structure-reactivity correlation of Cys-SSO3H in biologic settings.


Assuntos
Cisteína , Sulfatos , Domínio Catalítico , Elétrons , Ânions
5.
Analyst ; 146(13): 4365-4373, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34128507

RESUMO

A novel, compact and sensitive SE-LIAD/TOF-MS has been described. It facilitates fast sample preparation, and a full mass spectrum is acquired efficiently and sensitively. More importantly, it features the detection of non-acidic and non-basic or non-polar species, which is not suitable for determination by ESI and MALDI techniques. In this technique, standard samples, carbazole and melamine, are prepared on a Ti foil with a quartz plate attached to the backside of the Ti foil to perform a laser-induced acoustic desorption experiment (SE-LIAD) coupled to TOF-MS for analysis. Enhanced signals are observed with about 5.6 to 13.8 times higher than that obtained in the standard LIAD method, dependent on different ionization techniques. Compared to the EI spectra, the PI spectra for both species show intact and sharp molecular peaks. The limits of detection (LOD) of melamine were evaluated experimentally in the range from ∼2-6 pg (EI/MS mode) to ∼0.3-0.5 ng (VUV-SPI/MS mode). Thus, the method in this study exhibits rapid qualitative and quantitative analysis with good sensitivity, being free of the complex matrix influences.

6.
Inorg Chem ; 59(23): 16944-16951, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33135891

RESUMO

Generally, compared to conjugated chain molecules, aromaticity provides additional stability for the cyclic, planar, and conjugated molecules. Thus, the concept of aromaticity was undeniably utilized to explain the unique stability for extensive cyclic molecules (notably for benzene, recently reported boron rings, and all-metal multiply aromatic Al42- salts) to guide chemical syntheses. However, can aromaticity alone describe the stability for all of those cyclic and planar clusters or molecules? In this regard, we observed the four-membered prototypical rings: c-M2O2-/0 clusters (M = B, Al, Ga, and In) possessing unique rhombic (four-center, four-electron) π and σ o-bonds, which are considered to have 3-fold aromaticity. Moreover, we not only elucidated the key role of ring strain energy (RSE) to determine the stability of these rings but also unexpectedly revealed that the electrostatic interaction (ionicity) plays a fundamental role in the stability of Al2O2-/0 clusters through systematically experimental and theoretical investigations into the isolated M2O2-/0 clusters (M = B, Al, Ga, and In). Detailed geometries, molecular orbital, and chemical bonding nature were analyzed to unravel those influences. This work provides a clue in which RSE and the electrostatic effect should be carefully taken into account for the stability of diverse cyclic clusters or molecules compared to the expected stability factor from aromaticity.

7.
Phys Chem Chem Phys ; 22(31): 17554-17558, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716467

RESUMO

Oxidation of cysteine residues constitutes an important regulatory mechanism in the function of biological systems. Much of this behavior is controlled by the specific chemical properties of the thiol side-chain group, where reactions with reactive oxygen species take place. Herein, we investigated the entire cysteine oxidation cycle Cys-SH → Cys-SOnH (n = 1, 2, and 3) using cryogenic negative ion photoelectron spectroscopy and quantum-chemical calculations. The conventional view of the first reversible oxidation step (n = 1) is associated with sulfenate species. Yet our results indicate that an alternative option exists in the form of a novel distonic radical anion, ˙OS-CH2CH(NH2)-COO-, with an unpaired electron on the thiol group and excess negative charge on the carboxylate group. Higher order oxidation states (n = 2 and 3) are thought to be associated with irreversible oxidative damage, and our results show that excess negative charge in those cases migrates to the -SOn- group. Furthermore, these species are stable towards 1e oxidation, as opposed to the n = 1 case that undergoes intra-molecular proton transfer. The molecular level insights reported in this work provide direct spectroscopic evidence of the unique chemical versatility of Cys-sulfenic acid (Cys-SOH) in post-translational modifications of protein systems.


Assuntos
Ânions/química , Cisteína/química , Oxirredução , Espectroscopia Fotoeletrônica , Prótons , Teoria Quântica , Espécies Reativas de Oxigênio/química
8.
J Phys Chem A ; 124(5): 924-931, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31927951

RESUMO

The CO chemisorption onto the ScO+ cation was investigated using infrared photodissociation spectroscopy combined with density functional theory calculations. The spectra were recorded in the CO stretching vibrational region for the OSc(CO)n+ (n = 4-6) complex series. Comparisons of the experimental spectra with the simulated ones have established the geometries and present strong evidence that all of the CO ligands are chemisorbed, which could not be readily oxidized by scandium monoxide core into CO2. Complementary calculations demonstrate that, regardless of the thermodynamic feasibility, the CO oxidation on the scandium monoxide carbonyl complexes is kinetically unfavorable due to the significant barriers involved in the CO oxidation process. Nevertheless, the consecutive CO adsorption has a positive influence on the Sc-O bond activation.

9.
J Chem Phys ; 150(4): 044302, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709243

RESUMO

As is well-known, the S2 molecule is a ubiquitous intermediate in the combustion, atmosphere, and interstellar space. The six low-lying bound states of S2 have been characterized via photoelectron velocity map imaging and a high-level multi-reference configuration interaction method with the Davidson correction. Spectroscopic constants have been extracted by fitting the potential energy curves extrapolated to the complete basis set limit with a series of Dunning's correlation-consistent basis sets: aug-cc-pV(Q, 5)Z. The calculated spectroscopic parameters well reproduce the experimental results in this work. On the basis of the theoretical calculations, Franck-Condon simulations are performed to assign six adjacent electronic states, especially for three higher overlapping electronic states (c1Σu -, A'3Δu, and A3Σu +). The dissociation energy De of the S2 - is evaluated to be 4.111 (4) eV in this work, in agreement with the theoretical prediction (4.056 eV).

10.
J Chem Phys ; 149(22): 224302, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30553239

RESUMO

Covalent and noncovalent interactions dominate most compounds in the condensed phase and gas phase. For a classical diatomic molecule CO, it is usually regarded as a triple-bond system with one dative bond. In this work, the photoelectron velocity-map imaging spectra of the CS and PbS anions were first measured. The two interactions have been intuitively understood by a comparative investigation of electrostatic potential (ESP) and bond features in CO, CS, and PbS. It is suggested that both electrostatic and dative covalent interactions compete in CO molecules, while dative covalent interaction prevails in CS molecules and electrostatic interaction dominates in PbS molecules. As a consequence, CO has a very small dipole moment (∼0.1 D) compared to the large dipole moment in CS (>1.8 D) and PbS (>4 D). It is indicated that the electron affinity value increases with the increasing dipole moment in the order of CO < CS < PbS. In addition, intriguing ESP with negative bond-ends and positive bond-cylindrical-surface in CO is also revealed by comparing with that in CS and PbS. In the latter, the two molecules present opposite ESP maps. Molecular orbital analyses indicate surprising participation of Pb 5d orbitals in the Pb-S chemical bonding although Pb belongs to main-group elements. Further bond analyses using electron localization function, natural resonance theory, and bond order methods suggest that covalence is dominant in CS and ionicity is a major component in PbS, but somewhere in between for CO molecules. By a comparative study in this work, the CS molecule is also revealed as a promising ligand molecule for the transition-metal coordination chemical synthesis.

11.
J Am Chem Soc ; 139(41): 14749-14756, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28933868

RESUMO

The stability and electron loss process of numerous multiply charged anions (MCAs) have been traditionally explained in terms of the classical Coulomb interaction between spatially separated charged groups. An understanding of these processes in MCAs with not well-separated excess charges is still lacking. We report the surprising properties and physical behavior of [B12X12]2-, X = F, Cl, Br, I, At, which are MCAs with not well-separated excess charges and cannot be described by the prevailing classical picture. In this series of MCAs, comprising a "boron core" surrounded by a "halogen shell", the sign of the total charge in these two regions changes along the halogen series from X = F-At. With the aid of experimental photoelectron spectroscopy and highly correlated ab initio electronic structure calculations, we demonstrate that the trend in the electronic stability of these MCAs is determined by the interplay between the Coulomb (de)stabilization originating from the "boron core" and "halogen shell" and the extension of the overlap between the orbitals from both regions. The second excess electron is always taken from the most positively charged region, viz., the "boron core" for X = F, Cl, and the surrounding "halogen shell" for X = I, At. This change in the physical behavior is attributed to the position of the highest occupied molecular orbital, which dwells in a region that is spatially separated from the one containing the excess negative charge. The unusual intrinsic electronic structure of the [B12X12]2- MCAs provides the basis for a molecular level understanding of their observed unique physical and chemical properties and a new paradigm for understanding the properties of these MCAs with not well-separated charges that departs from the prevailing model used for spatially separated charges that is based on their classical Coulomb interaction.

12.
J Phys Chem A ; 120(20): 3533-8, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27152488

RESUMO

Joint research of photoelectron velocity map imaging spectroscopy and density functional theory has been performed to probe the geometrical structures and electronic properties for heterodinuclear iron-lead carbonyl cluster PbFe(CO)4(-), which serves as a monomer of the metal-metal bonded oligomer. The photoelectron detachment of PbFe(CO)4(-) is recorded at two different photon energies with rich spectral features. The ground-state transition obtained at 532 nm reveals a broad vibrationally resolved spectral band, which corresponds to the lead-iron stretching, while the 355 nm spectrum displays many more transitions on the higher-energy side, which correspond to the electronic excited states of PbFe(CO)4. Theoretical calculations at the B3LYP level are performed to explore the ground states of both the anionic and neutral PbFe(CO)4 and to support spectral identification of the fine resolved photoelectron spectra. Moreover, the unique chemical bonding between lead and iron in PbFe(CO)4 is discussed with the aid of natural bond orbital analyses.

13.
J Chem Phys ; 145(21): 214310, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799338

RESUMO

Three short-lived, anionic intermediates, ISO3-, IS2O3-, and IS2O4-, are detected during reactions between ozone and aqueous iodine/sulfur oxide microdroplets. These species may play an important role in ozone-driven inorganic aerosol formation; however their chemical properties remain largely unknown. This is the issue addressed in this work using negative ion photoelectron spectroscopy (NIPES) and ab initio modeling. The NIPE spectra reveal that all of the three anionic species are characterized by high adiabatic detachment energies (ADEs) - 4.62 ± 0.10, 4.52 ± 0.10, and 4.60 ± 0.10 eV for ISO3-, IS2O3-, and IS2O4-, respectively. Vibrational progressions with frequencies assigned to the S-O symmetric stretching modes are discernable in the ground state transition features. Density functional theory calculations show the presence of several low-lying isomers involving different bonding scenarios. Further analysis based on high level CCSD(T) calculations reveal that the lowest energy structures are characterized by the formation of I-S and S-S bonds and can be structurally viewed as SO3 linked with I, IS, and ISO for ISO3-, IS2O3-, and IS2O4-, respectively. The calculated ADEs and vertical detachment energies are in excellent agreement with the experimental results, further supporting the identified minimum energy structures. The obtained intrinsic molecular properties of these anionic intermediates and neutral radicals should be useful to help understand their photochemical reactions in the atmosphere.

14.
Inorg Chem ; 53(20): 10909-16, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25279999

RESUMO

The homoleptic heterodinuclear copper-nickel carbonyl anions CuNi(CO)n(-) (n = 2-4) were generated in a pulsed-laser vaporization source and investigated using photoelectron velocity-map imaging spectroscopy. The electron affinities of CuNi(CO)2 (2.15 ± 0.03 eV), CuNi(CO)3 (2.30 ± 0.03 eV), and CuNi(CO)4 (1.90 ± 0.04 eV) were deduced from the photoelectron spectra. Theoretical calculations at the B3LYP level were carried out to elucidate the structures and the electronic properties of CuNi(CO)n(0/1-) (n = 1-4) and to support the experimental observations. Comprehensive comparisons between experiments and calculations suggest that there is a turnover point of the absorption site during the progressive carbonylation process. The carbonyl groups are determined to be preferentially bonded to the nickel atom. When the nickel center satisfies the 18-electron configuration, the copper atom starts to adsorb additional CO molecules. These results will shed light on the bonding mechanisms of the heterometallic carbonyl clusters.

15.
J Phys Chem A ; 118(40): 9380-5, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25203282

RESUMO

The octacoordinate metal carbonyls La(CO)8(+) and Ce(CO)8(+) were observed in laser vaporization of La and Ce in pure CO gas. The peak intensities in the mass spectra, the infrared photodissociation spectra, and the theoretical calculations indicate that all CO ligands in these two complexes are bonded with the central metal atoms. The CO stretching frequencies in La(CO)8(+) and Ce(CO)8(+) are determined to be 2110 and 2108 cm(-1), respectively. Theoretical studies indicate that the most stable structures for La(CO)8(+) and Ce(CO)8(+) are an Oh geometry at its triplet state and a slightly distorted Oh geometry at its quartet state, respectively. These two complexes represent new octacoordinate metal carbonyls after previously determined U(CO)8(+) and Y(CO)8(+).

16.
J Phys Chem A ; 118(6): 1031-7, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24460048

RESUMO

We report a combined photoelectron velocity map imaging spectroscopy and density functional theory investigation on the Au3H(-) anion. Transition between the anionic electronic ground state and the neutral electronic ground state is revealed. Vibrationally resolved spectra were recorded at two different photon energies, providing a wealth of spectroscopic information for the electronic ground state of the Au3H. Franck-Condon simulations of the ground-state transition are carried out to assist in the assignment of the vibrationally resolved spectra. The electron affinity and vertical detachment energy of Au3H are measured to be 2.548 ± 0.001 and 2.570 ± 0.001 eV, respectively. Three stretching vibrational modes are determined to be activated upon photodetachment, with the frequencies of 2100 ± 100, 177 ± 10, and 96 ± 10 cm(-1).

17.
J Phys Chem A ; 118(19): 3402-9, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24773175

RESUMO

We first demonstrate the photoelectron spectroscopic evidence of the transition of two competitive solvation patterns in the Au(-)(CH3OH)n (n = 1-5) clusters. Quantum chemical calculations have been carried out to characterize the geometric structures, energy properties and hydrogen-bonded patterns, and to aid the spectral assignment. It has been found that the nonconventional hydrogen bonds dominate the small clusters (n = 1 and 2), whereas the conventional hydrogen bonds play more and more important role from n = 2 to n = 5. This finding provides concrete hydrogen bond network evolution of Au(-) surrounded by methanol molecules.

18.
J Chem Phys ; 140(11): 114307, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655180

RESUMO

We have reported a combined photoelectron imaging and theoretical study on gaseous mixed-ligand M(I) complexes of [HMSH](-) (M = Cu, Ag, and Au). With the aid of Franck-Condon simulations, vibrationally resolved photoelectron spectra yield accurate electron affinities of 3.269(6), 3.669(10), and 3.591(6) eV for [HCuSH], [HAgSH], and [HAuSH], respectively. And low-frequency modes are observed: 368(12) cm(-1) for [HCuSH], 286(12) cm(-1) for [HAgSH], and 327(12) cm(-1) for [HAuSH], respectively. Extensive theoretical calculations are performed to aid in the spectral assignments and the calculated values agree well with the experimental observations. Although the S and H atoms have little discrepancy in electronegativity (2.20 for H and 2.54 for S), distinct bonding properties are demonstrated between H-M and M-S bond. It is revealed that there exists significant ionic bonding between M-S in [HMSH](-) (M = Cu, Ag, and Au), while a gradual transition from ionic behavior between H-Cu in [HCuSH](-) to quite strong covalent bonding between H-Au in [HAuSH](-), supported by a variety of chemical bonding analyses.

19.
J Chem Phys ; 140(21): 214318, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908019

RESUMO

Low-energy photoelectron imaging spectra of HCS2(-) are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS2(-) to the ground state and low-lying excited states of HCS2 are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS2 radical in the gaseous phase. The ground state and two low-lying excited states of HCS2 radical are assigned as (2)B2, (2)A2, and (2)A1 states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T0 = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

20.
J Chem Phys ; 141(20): 204312, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429947

RESUMO

Low-energy photoelectron imaging of HS2 (-) has been investigated, which provides the vibrational frequencies of the ground state as well as the first excited state of HS2. It allows us to determine more accurate electron affinity of HS2, 1.9080 ± 0.0018 eV. Combined with Frank-Condon simulation, the vibrational features have been unveiled related to S-S stretching and S-S-H bending modes for the ground state and S-S stretching, S-S-H bending, and S-H stretching modes for the first excited state. Photoelectron angular distributions are mainly characteristic of electron detachment from two different molecular orbitals (MOs) in HS2 (-). With the aid of accurate electron affinity value of HS2, corresponding thermochemical quantities can be accessed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa