Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115794, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061084

RESUMO

The massive accumulation of red mud (RM) and the abuse of antibiotics pose a threat to environment safety and human health. In this study, we synthesized RM-based Prussian blue (RM-PB) by acid solution-coprecipitation method to activate H2O2 to degrade norfloxacin, which reached about 90% degradation efficiency at pH 5 within 60 min and maintained excellent catalytic performance over a wide pH range (3-11). Due to better dispersion and unique pore properties, RM-PB exposed more active sites, thus the RM-PB/H2O2 system produced more reactive oxygen species. As a result, the removal rate of norfloxacin by RM-PB/H2O2 system was 8.58 times and 2.62 times of that by RM/H2O2 system and PB/H2O2 system, respectively. The reactive oxygen species (ROS) produced in the degradation process included ·OH, ·O2- and 1O2, with 1O2 playing a dominant role. The formation and transformation of these ROS was accompanied by the Fe(III)/Fe(II) cycle, which was conducive for the sustained production of ROS. The RM-PB/H2O2 system maintained a higher degradation efficiency after five cycles, and the material exhibited strong stability, with a low iron leaching concentration. Further research showed the degradation process was less affected by Cl-, SO42-, NO3-, and humic acids, but was inhibited by HCO3- and HPO42-. In addition, we also proposed the possible degradation pathway of norfloxacin. This work is expected to improve the resource utilization rate of RM and achieve treating waste with waste.


Assuntos
Ferrocianetos , Peróxido de Hidrogênio , Norfloxacino , Humanos , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio , Compostos Férricos , Oxirredução
2.
Bioorg Chem ; 131: 106340, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586301

RESUMO

7ß-Hydroxysteroid dehydrogenases (7ß-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7ß-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7ß-HSDH (Cle7ß-HSDH). The Cle7ß-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7ß-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.


Assuntos
Hidroxiesteroide Desidrogenases , NAD , Ácido Ursodesoxicólico , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/metabolismo , Simulação de Acoplamento Molecular , NAD/química , NADP/química , Ácido Ursodesoxicólico/biossíntese
3.
Bioorg Chem ; 136: 106533, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084587

RESUMO

Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of ß-lactam antibiotics, which can not only catalyze the synthesis of ß-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant ßF24G/ßW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at ßF24 and ßW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of ß-lactam antibiotics.


Assuntos
Achromobacter , Penicilina Amidase , Penicilina Amidase/metabolismo , Achromobacter/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ampicilina/metabolismo , Amoxicilina/metabolismo , Monobactamas
4.
Anal Biochem ; 650: 114724, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577007

RESUMO

High-potential iron-sulfur proteins (HiPIPs) from extremely acidophilic chemolithotrophic non-photosynthetic Acidithiobacillus commonly play a crucial role in ferrous or sulfurous biooxidation. Acidithiobacillus exhibit important industrial applications for bioleaching valuable metals from sulfide ores. In this study, two HiPIP genes from thermophilic Acidithiobacillus caldus SM-1 were cloned and successfully expressed, and their proteins were purified. The proteins displayed a brownish color with an optical absorbance peak at approximately 385 nm and an electronic paramagnetic resonance (EPR) g value of approximately 2.01, which confirmed that the iron-sulfur cluster was correctly inserted into the active site when the proteins were generated in E. coli. The proteins were more thermostable than HiPIPs from mesophilic Acidithiobacillus. The direct electron transfer (DET) between HiPIPs and electrode was achieved by the 2-mercaptopyrimidine (MP) surface-modified gold electrodes; the redox potentials of the HiPIP1 and HiPIP2 measured by cyclic voltammetry were approximately 304.5 mV and 400.5 mV, respectively. The electron transfer rate constant was estimated to be 0.75 s-1 and 0.66 s-1, respectively. The MP/Au electrode and Au electrode showed consistent differences in heterogeneous electron transfer rates and electron transfer resistances. Bioinformatics and molecular simulations further explained the direct electron transfer between the proteins and surface-modified electrode.


Assuntos
Acidithiobacillus , Proteínas Ferro-Enxofre , Acidithiobacillus/química , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Eletroquímica , Escherichia coli/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Enxofre/metabolismo
5.
Nanotechnology ; 33(31)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35443235

RESUMO

The use of microbial adsorption for metal ions to prepare novel carbon-supported metal nanomaterials has attracted growing research attention. However, the relationship between the adsorbed metal content and catalytic performance of the resulting nanomaterials is unclear. In this work,Pichia pastoris residueswas utilized to adsorb Ce(Ⅲ) at different metal ion concentrations, and then CeO2@C nanomaterials were prepared by pyrolysis. The effects of solution pH and adsorption behavior were investigated. The prepared nanostructures were characterized using electron microscopy and different spectroscopy methods, and their catalytic performances in the removal of salicylic acid from solution by catalytic ozonation were invested. The microbial residue had a metal uptake of 172.00 ± 2.82 mg· g-1at pH 6. In addition, the efficiency of total organic carbon (TOC) removal increased from 21.54% to 34.10% with an increase in metal content in the catalysts from 0 mg· g-1to 170.05 mg· g-1. After pyrolysis, the absorbed Ce(Ⅲ) metal transformed to CeO2metal nanoparticles embedded in a carbon matrix and had a core-shell CeO2@C structure. Therefore, this work not only reveals a relationship between metal content and catalytic performance, but also provides an approach for studying performance of materials with different metal contents loaded on various carriers.


Assuntos
Metais , Nanoestruturas , Adsorção , Carbono , Catálise , Íons
6.
J Environ Manage ; 323: 116173, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115246

RESUMO

Fungus-algae symbiotic systems (FASS) are typically used to assist in the immobilization of algae and strengthen the adsorption of heavy metals. However, the adsorption behavior of the symbiotic system and the molecular regulation mechanism of extracellular proteins in the adsorption of heavy metals have not been reported in detail. In this study, a stable FCSS (fungus-cyanobacterium symbiotic system) was used to study Cd(II) adsorption behavior. The fixation efficiency of fungus to cyanobacterium reached more than 95% at pH7.0, 30 °C, 150 rpm, and a medium ratio of 100%. The biomass, chlorophyll content, and total fatty acid content of the symbiotic system were much higher than those of cyanobacterium and fungus alone. The photosynthetic fluorescence parameters showed that the presence of fungus enhanced the light tolerance of cyanobacterium. The original light energy conversion efficiency and potential activity of PSII were enhanced, indicating that symbiosis could promote the photosynthetic process of cyanobacterium. The Cd(II) adsorption efficiency can achieve 90%. The system maintained excellent adsorption after six adsorption cycles. Differential proteins were mainly enriched in areas such as metabolism, ABC transport system, and pressure response. Cd(II) stress promotes an increase in efflux proteins. Moreover, cadmium can be fixed as much as possible by secreting extracellular proteins, and the toxicity of cadmium to cells can be alleviated by regulating the metabolism of glutathione, reducing oxidative phosphorylation level, and reducing oxidative stress, thus improving the resistance to Cd(II). Meanwhile, the expression of enzymes involved in glycolysis and the pentose phosphate pathway was upregulated, while the expression of those in the TCA cycle was downregulated. The expression of substances related to PSI and PSII in the photosynthetic system and rubisco, a key enzyme in the Calvin cycle, was significantly upregulated, indicating that the glucose metabolism and photosynthetic pathways of the symbiotic system were involved in resistance to Cd toxicity. This revealed the response mechanism of the fungus-algal symbiotic system in the process of Cd adsorption, and also provided reference value for industrial application in water treatment.


Assuntos
Cianobactérias , Metais Pesados , Adsorção , Cádmio/metabolismo , Clorofila/metabolismo , Ácidos Graxos , Fungos/metabolismo , Glucose , Glutationa/metabolismo , Glutationa/farmacologia , Fotossíntese , Ribulose-Bifosfato Carboxilase , Simbiose
7.
Angew Chem Int Ed Engl ; 61(46): e202212720, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36151587

RESUMO

Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.


Assuntos
Aminoácidos , Aminobutiratos , Cinética , Interações Hidrofóbicas e Hidrofílicas , Aminoácidos/metabolismo , Especificidade por Substrato
8.
Nanotechnology ; 32(6): 065701, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33210616

RESUMO

In recent years, the pyrolysis of microbial biomasses that adsorb various metal ions has enabled the preparation of carbon-based polymetallic nanomaterials with excellent electrocatalytic and electrical energy storage properties. However, the preparation of ozone catalysts by this technique and the corresponding catalytic oxidation mechanism are still unclear. In this study, an Escherichia coli strain (BL21) was used for tetra-metal (Cu, Fe, Mn and Al) absorption and the obtained microbial biomass was pyrolyzed under the protection of a nitrogen flow at 700 °C and activated at 900 °C to prepare a microbial-char-based tetra-metal ozone catalyst (MCOC). This was used to degrade phenol and coking wastewater and exhibited a strong catalytic capability for coking wastewater, whose chemical oxygen demand removal efficiency of 70.86% is 16.7% higher than that of pure ozone and 14.67%, 7.21% and 3.58% higher than that of three commercial catalysts, respectively. It also improved the efficiency of ozonation for phenol by 33%. The MCOC was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive spectroscopy, transmission electron microscopy and other methods. The results demonstrated that the spherical metal nanoparticles had sizes ranging from 3 nm to 7 nm and that crystals of Fe2O3 and Fe3P were observed. The study showed that the MCOC promoted the production of more hydroxyl radicals and superoxides from ozone, which attack organics. The oxygen vacancies of the catalyst were also investigated. It was proved that the Lewis acid sites on the surface of metal oxides are the active centers of ozone decomposition. Therefore, this work provides a new method for the synthesis of multi-metal nanocomposites and expands the application of biosynthetic nanomaterials.


Assuntos
Escherichia coli/química , Nanopartículas Metálicas/química , Ozônio/química , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Catálise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxigênio/química , Fenóis/química , Espectroscopia Fotoeletrônica , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Águas Residuárias/química
9.
J Am Chem Soc ; 142(16): 7317-7321, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32248690

RESUMO

Rational design and bottom-up synthesis based on the structural topology is a promising way to obtain two-dimensional metal-organic frameworks (2D MOFs) in well-defined geometric morphology. Herein, a topology-guided bottom-up synthesis of a novel hexagonal 2D MOF nanoplate is realized. The hexagonal channels constructed via the distorted (3,4)-connected Ni2(BDC)2(DABCO) (BDC = 1,4-benzenedicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2]octane) framework serve as the template for the specifically designed morphology. Under the inhibition and modulation of pyridine through a substitution-suppression process, the morphology can be modified from hexagonal nanorods to nanodisks and to nanoplates with controllable thickness tuned by the dosage of pyridine. Subsequent pyrolysis treatment converts the nanoplates into a N-doped Ni@carbon electrocatalyst, which exhibits a small overpotential as low as 307 mV at a current density of 10 mA cm-2 in the oxygen evolution reaction.

10.
BMC Microbiol ; 20(1): 106, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354325

RESUMO

BACKGROUND: Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce. RESULTS: Here, we identified a 5,436,472 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As (III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Furthermore, a wide variety of genes associated with Sb(III) and other heavy metal (loid) s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), Bacillus sp. S3 was proved to a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed the evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal (loid) s resistance genes emphasized its indispensable role in the harsh eco-environment of Bacillus genus. Real-time quantitative PCR (RT-qPCR) analysis indicated that Sb(III)-related genes were all induced under the Sb(III) stress, while arsC gene was down-regulated. CONCLUSIONS: The results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationships between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.


Assuntos
Antimônio/metabolismo , Bacillus/genética , Sequenciamento Completo do Genoma/métodos , Bacillus/metabolismo , Composição de Bases , Biodegradação Ambiental , Cromossomos Bacterianos/genética , Evolução Molecular , Tamanho do Genoma , Genoma Bacteriano , Genômica , Anotação de Sequência Molecular , Filogenia , Plasmídeos/genética
11.
Ecotoxicol Environ Saf ; 205: 111174, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853867

RESUMO

Smelting wastewater is characterized with high concentration of toxic heavy metals and high acidity, which must be properly treated before discharge. Here, bioelectrochemical system (BES) coupled with thermoelectric generator (TEG) was first demonstrated to simultaneously treat organic wastewater and smelting wastewater by utilizing the simulated waste heat that was abundant in smelting factories. By modulating the input voltage generated from simulated waste heat via TEG to 0, 1.0 and 2.0 V, almost all the Cu2+, Cd2+ and Co2+ in smelting wastewater were sequentially recovered with a respective rate of 121.17, 158.20 and 193.87 mg L-1 d-1. Cu2+ was bioelectrochemically recovered as Cu0. While, Cd2+ and Co2+ were recovered by electrodeposition as Cd(OH)2, CdCO3 or Co(OH)2 on cathodic surface. High throughput sequencing analysis showed that the microbial community of anodic biofilm was greatly shifted after successive treatment by batch-mode. Desulfovibrio (17.00%), Megasphaera (11.81%), Geobacter (10.36%) and Propionibacterium (8.64%) were predominant genera in anodic biofilm enriched from activated sludge in BES before treatment. After successive treatment by batch-mode, Geobacter (34.76%), Microbacter (8.60%) and Desulfovibrio (5.33%) were shifted as the major genera. Economic analysis revealed that it was feasible to use TEG to substitute electrical grid energy to integrate with BES for wastewater treatment. In addition, literature review indicated that it was not uncommon for the coexistence of waste heat with typical pollutants (e.g. heavy metal ions and various biodegradation-resistant organic wastes) that could be treated by BES in different kinds of factories or geothermal sites. This study provides novel insights to expand the application potentials of BES by integrating with TEG to utilize widespread waste heat.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Metais Pesados/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Eletrodos , Geobacter/crescimento & desenvolvimento , Temperatura Alta , Esgotos/microbiologia
12.
Bioprocess Biosyst Eng ; 43(10): 1885-1897, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32448988

RESUMO

It is important to recover precious metals from secondary wastewater because of their low crustal abundance. The selective adsorption of palladium (Pd) and platinum (Pt) ions from secondary wastewater, which contains a large amount aluminium and sodium ions, was investigated using Escherichia coli BL21 (BL21), genetically modified E. coli BL21 (EC20) and Providencia vermicola (P. V.). The results demonstrated that P.V., BL21 and EC20 cells took 95.9%, 88.2% and 97.5% of Pd ions, and 64.8%, 93.2% and 100% of Pt ions form industrial wastewater, respectively. All three bacterial biomass could be reused for Pd adsorption with a second adsorption efficiency of > 85%, specifically, the EC20 cells could absorb 93.8% of Pd ions from wastewater. SEM-EDS and XPS analyses confirmed the occurrence of Pd and Pt on the surface of wastewater-absorbed biomass. The shift in FTIR spectrum implied that functional groups, such as hydroxyl, amino, carboxyl and phosphate groups, were involved in wastewater adsorption.


Assuntos
Escherichia coli/metabolismo , Paládio/metabolismo , Platina/metabolismo , Providencia/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção
13.
Bioprocess Biosyst Eng ; 43(1): 153-167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31549306

RESUMO

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM-EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.


Assuntos
Bacillus/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Metais Pesados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo , Biodegradação Ambiental
14.
Nanotechnology ; 30(6): 065607, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30524068

RESUMO

Bimetallic nanoparticles (NPs) often exhibit improved catalytic performance due to the electronic and spatial structure changes. Herein, a novel green biosynthesis method for Pd-Pt alloy NPs using Shewanella oneidensis MR-1 was proposed. The morphology, size and crystal structure of Pd-Pt alloy NPs were studied by a suite of characterization techniques. Results showed Pd-Pt alloy NPs were successfully synthesized inside and outside the cell. The biosynthesized Pd-Pt alloy NPs were polycrystalline and face-centered-cubic structure with the particle size ranged from 3-40 nm. Furthermore, the catalytic experiment demonstrated that the Pd-Pt alloy NPs exhibited the highest performance for the catalytic reduction of nitrophenol and azo dyes compared with the as-synthesized Pd and Pt monometallic NPs. This enlarged catalytic activity resulted from the synergistic effect of Pd and Pt element. Thereby, this paper provided a simple biosynthesis method for producing bimetallic alloy nanocatalyst with superior activity for contaminant degradation.


Assuntos
Ligas/química , Compostos Azo/química , Biocatálise , Nanopartículas Metálicas/química , Nitrofenóis/química , Paládio/química , Platina/química , Shewanella/metabolismo , Biomassa , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Difração de Raios X
15.
J Ind Microbiol Biotechnol ; 46(8): 1113-1127, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165968

RESUMO

Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.


Assuntos
Cobre/metabolismo , Sulfolobaceae/metabolismo , Processos Heterotróficos , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Sulfolobaceae/genética , Enxofre/metabolismo
16.
Ecotoxicol Environ Saf ; 173: 118-130, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30771655

RESUMO

Hexavalent chromium (Cr(VI)) is an environmental concern due to the carcinogenic and mutagenic effect on living organisms. Sulfide minerals based Cr(VI) reduction is an economical and efficient strategy for Cr(VI) remediation. In this study, Cr(VI) reduction through the synergistic effect between chemoautotrophic bacteria and sulfide mineral is systematically investigated. Sulfide minerals dissolution and Cr(VI) reduction performance highly depends on mineral acid soluble property. Cr(VI) reduction capacity of pyrrhotite, pyrite, marcasite and sphalerite was 50, 104, 104 and 44 mg/g (Cr(VI)/mineral) respectively in the biotic system. Acidithiobacillus ferrooxidans (A. ferrooxidans) significantly enhanced pyrite and marcasite based Cr(VI) reduction kinetic and capacity. Proton consumption, iron coprecipitation and the biological activity deficiency in the abiotic system significantly inhibited Cr(VI) reduction. Elemental sulfur and secondary iron mineral as the main composition of the passivation layer inhibited sustainable Cr(VI) reduction. A. ferrooxidans facilitated acid nonsoluble mineral dissolution and surface passivation layer removal, and promoted Cr(VI) reduction. Acid nonsoluble sulfide mineral disulfide bond rapture, S°/Sn2- oxidization, and Fe(III)/Cr(III) dissolution were accelerated by A. ferrooxidans, which facilitated Cr(VI) reduction reactive sites regeneration. Our study demonstrated that chemoautotrophic bacterial accelerated Cr(VI) reduction reaction through promoting acid nonsoluble sulfide mineral dissolution. This research is of environmental and practical significance to remediate redox sensitive contaminant based on the synergistic effect between sulfide minerals and chemoautotrophic A. ferrooxidans.


Assuntos
Acidithiobacillus/metabolismo , Carcinógenos Ambientais/química , Cromo/química , Minerais/química , Sulfetos/química , Biodegradação Ambiental , Compostos Férricos/química , Oxirredução , Solubilidade
17.
Ecotoxicol Environ Saf ; 169: 103-111, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439582

RESUMO

To increase the platinum adsorption capacity of Escherichia coli (E. coli) biomass, we fused EC20 protein to the E. coli cell surface using an InaKN-based display system, which is the N-terminal region of ice nucleation protein that can be employed as a cell surface display motif. The media and culture conditions were optimized for EC20 (a phytochelatin analogue with 20 repeating units of glutamate and cysteine) expression and Pt (IV) biosorption. Furthermore, the adsorption process was elucidated from aspect of adsorption kinetics and equilibrium, and the characterization of blank and Pt-loaded cells were analyzed using SEM, AFM, TEM, FT-IR and XPS. Our study demonstrated that E. coli strain, which had InaKN-EC20 protein expressed on the cell surface, showed a great enhancement in Pt (IV) adsorption under optimized condition when comparing with that of original E. coli strain. The SEM-EDX analysis revealed that the cellular morphology has been changed in Pt-loaded cells, and the weight percent of platinum in the surface of E.coli increased substantially after displaying EC20 protein. Furthermore, intracellular platinum accumulation was detected in Pt-loaded EC20 cells since a clear peak of platinum exhibited, implying that cytoplasmic EC20 protein might also contribute to platinum accumulation. FTIR analysis revealed that the predominant functional groups in platinum adsorption were amine, carboxyl and phosphate groups.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/química , Fitoquelatinas/química , Platina/isolamento & purificação , Adsorção , Proteínas da Membrana Bacteriana Externa/genética , Biomassa , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Cinética , Fitoquelatinas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
Langmuir ; 34(21): 6217-6224, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29739191

RESUMO

Dissolved air flotation (DAF) is broadly applied in wastewater treatment, especially for the recovery of organic pollution with low concentration. However, the mechanism of interaction between nanoscale gas bubbles and nanoparticles in the process of DAF remains unclear. Here, we investigated the role of nanobubbles in the precipitation of styryl phosphoric acid (SPA)-Pb particles and recovering organic phosphine containined in beneficiation wastewater by UV-vis (ultraviolet-visible) spectra, microflotation tests, nanoparticle tracking analysis, dynamic light scattering, and atomic force microscopy measurements. As suggested from the results, nanobubbles can inhibit the crystallization of SPA-Pb precipitation, which makes the sediment flotation recovery below 20%. After the precipitation crystallization is completed, nanobubbles can flocculate precipitated particles, which can promote the flotation recovery of precipitated particles to 90%. On the basis of the results, we proposed a model to explain the different roles of nanobubbles in the process of precipitation and flotation of SPA-Pb particles. This study will be helpful to understand the interaction between nanobubbles and nanoparticles in the application of flotation.

19.
Curr Microbiol ; 75(7): 818-826, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29464360

RESUMO

Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe2+ oxidation and generate Fe3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c4-type cytochrome c552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe2+ oxidation mechanism in Fe2+-oxidizing A. ferrooxidans ssp.


Assuntos
Acidithiobacillus/metabolismo , Proteínas de Bactérias/genética , Compostos Ferrosos/metabolismo , Família Multigênica , Acidithiobacillus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Óperon , Oxirredução , Filogenia , Alinhamento de Sequência , Enxofre/metabolismo
20.
J Environ Manage ; 219: 84-94, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730593

RESUMO

Natural pyrite was an economical choice for efficient Cr(VI) remediation, while its deep utilization was inhibited due to the passivation effect. In this study, pyrite passivation/dissolution and active sites regeneration mechanism under the activity of acidophilic bacteria with different energy metabolism characteristic in Cr(VI) reduction have been investigated. The reduction capacity was in the order of Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans(S), Acidithiobacillus ferrooxidans(Fe), Leptospirillum ferrooxidans and chemical control. The maximal reduction efficiency was achieved in A. thiooxidans system, which is 4.5 times higher than the L. ferrooxidans system. In chemical system, sulfur and Fe(III)/Cr(III)-oxyhydroxysulphate accumulation would result in pyrite passivation. A. thiooxidans attached on pyrite surface and exerted synergistic effect on pyrite corrosion coupled with Cr(VI). Sulfur oxidation promoted proton regeneration, pyrite lattice Fe(II) dissolution and active sites regeneration, which were beneficial to sustainable Cr(VI) reduction. Secondary iron mineral formation on pyrite was accelerated with the iron oxidation bacteria activity increasing. Excessive oxidation to surface sites Fe(II) and the accumulation of S0/Sn2- led to the passivation effect in L. ferrooxidans system. Cr(VI) acquired electron from Fe(II) and disulfide and resulted in the bond break between them. The combined effect of specific sulfur oxidizing bacteria activity and Cr(VI) oxidation efficient promoted pyrite dissolution and active sites regeneration. The interaction between acidophilic bacteria and pyrite significantly enhanced Cr(VI) reduction efficiency.


Assuntos
Acidithiobacillus , Cromo , Poluição Ambiental/prevenção & controle , Sulfetos , Bactérias , Compostos Férricos , Minerais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa