Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(14): e2005993, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682329

RESUMO

In this study a mesoporous silica nanoparticle (MSNP) based platform is developed for high-dose loading of a range of activated platinum (Pt) chemo agents that can be attached to the porous interior through the use of electrostatic and coordination chemistry under weak-basic pH conditions. In addition to the design feature for improving drug delivery, the MSNP can also be encapsulated in a coated lipid bilayer (silicasome), to improve the colloidal stability after intravenous (IV) injection. Improved pharmacokinetics and intratumor delivery of encapsulated activated oxaliplatin (1,2-diamminocyclohexane platinum(II) (DACHPt)) over free drug in an orthotopic Kras-derived pancreatic cancer (PDAC) model is demonstrated. Not only does IV injection of the DACHPt silicasome provide more efficacious cytotoxic tumor cell killing, but can also demonstrate that chemotherapy-induced cell death is accompanied by the features of immunogenic cell death (ICD) as well as a dramatic reduction in bone marrow toxicity. The added ICD features are reflected by calreticulin and high-mobility group box 1 expression, along with increased CD8+ /FoxP3+ T-cell ratios and evidence of perforin and granzyme B release at the tumor site. Subsequent performance of a survival experiment, demonstrates that the DACHPt silicasome generates a significant improvement in survival outcome, which can be extended by delayed administration of the anti-PD-1 antibody.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Preparações Farmacêuticas , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Platina
2.
Adv Sci (Weinh) ; 8(6): 2002147, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747719

RESUMO

There is an urgent need to develop new life-prolonging therapy for pancreatic ductal adenocarcinoma (PDAC). It is demonstrated that improved irinotecan delivery by a lipid bilayer coated mesoporous silica nanoparticle, also known as a silicasome, can improve PDAC survival through a chemo-immunotherapy response in an orthotopic Kras-dependent pancreatic cancer model. This discovery is premised on the weak-basic properties of irinotecan, which neutralizes the acidic lysosomal pH in PDAC cells. This effect triggers a linked downstream cascade of events that include autophagy inhibition, endoplasmic reticulum stress, immunogenic cell death (ICD), and programmed death-ligand 1 (PD-L1) expression. ICD is characterized by calreticulin expression and high-mobility group box 1 (HMGB1) release in dying Kras-induced pancreatic cancer (KPC) cells, which is demonstrated in a vaccination experiment to prevent KPC tumor growth on the contralateral site. The improved delivery of irinotecan by the silicasome is accompanied by robust antitumor immunity, which can be synergistically enhanced by anti-PD-1 in the orthotopic model. Immunophenotyping confirms the expression of calreticulin, HMGB1, PD-L1, and an autophagy marker, in addition to perforin and granzyme B deposition. The chemo-immunotherapy response elicited by the silicasome is more robust than free or a liposomal drug, Onivyde. The silicasome plus anti-PD-1 leads to significantly enhanced survival improvement, and is far superior to anti-PD-1 plus either free irinotecan or Onivyde.

3.
ACS Nano ; 13(1): 38-53, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525443

RESUMO

Irinotecan is a key chemotherapeutic agent for the treatment of colorectal (CRC) and pancreatic (PDAC) cancer. Because of a high incidence of bone marrow and gastrointestinal (GI) toxicity, Onivyde (a liposome) was introduced to provide encapsulated irinotecan (Ir) delivery in PDAC patients. While there is an ongoing clinical trial (NCT02551991) to investigate the use of Onivyde as a first-line option to replace irinotecan in FOLFIRINOX, the liposomal formulation is currently prescribed as a second-line treatment option (in combination with 5-fluorouracil and leucovorin) for patients with metastatic PDAC who failed gemcitabine therapy. However, the toxicity of Onivyde remains a concern that needs to be addressed for use in CRC as well. Our goal was to custom design a mesoporous silica nanoparticle (MSNP) carrier for encapsulated irinotecan delivery in a robust CRC model. This was achieved by developing an orthotopic tumor chunk model in immunocompetent mice. With a view to increase the production volume and to expand the disease applications, the carrier design was improved by using an ethanol exchange method for coating of a supported lipid bilayer (LB) that entraps a protonating agent. The encapsulated protonating agent was subsequently used for remote loading of irinotecan. The excellent irinotecan loading capacity and stability of the LB-coated MSNP carrier, also known as a "silicasome", previously showed improved efficacy and reduced toxicity when compared to an in-house liposomal carrier in a PDAC model. Intravenous injection of the silicasomes in a well-developed orthotopic colon cancer model in mice demonstrated improved pharmacokinetics and tumor drug content over free drug and Onivyde. Moreover, improved drug delivery was accompanied by substantially improved efficacy, increased survival, and reduced bone marrow and GI toxicity compared to the free drug and Onivyde. We also confirmed that the custom-designed irinotecan silicasomes outperform Onivyde in an orthotopic PDAC model. In summary, the Ir-silicasome appears to be promising as a treatment option for CRC in humans based on improved efficacy and the carrier's favorable safety profile.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Irinotecano/administração & dosagem , Nanocápsulas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Irinotecano/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Nanocápsulas/efeitos adversos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa