Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Gastrointest Oncol ; 16(5): 2123-2140, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764835

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate gene expression and play a critical role in cancer physiology. However, there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer (GC). AIM: To investigate the role and molecular mechanism of miRNA-145-5p (miR145-5p) in the progression of GC. METHODS: Real-time polymerase chain reaction (RT-PCR) was used to detect miRNA expression in human GC tissues and cells. The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays, respectively. Cell proliferation was measured using cell counting kit-8 and colony formation assays, and apoptosis was evaluated using flow cytometry. Expression of the epithelial-mesenchymal transition (EMT)-associated protein was determined by Western blot. Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system. Serpin family E member 1 (SERPINE1) expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining. The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis. The association between SERPINE1 and GC progression was also tested. A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p. The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice. RESULTS: GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA. Overexpression of miR-145-5p was associated with decreased GC cell proliferation, invasion, migration, and EMT, and these effects were reversed by forcing SERPINE1 expression. Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression. Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2 (ERK1/2). CONCLUSION: This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC. MiR-145-5p was found to affect GC cell proliferation, migration, and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.

2.
Pest Manag Sci ; 80(6): 2710-2723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358029

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae (Xoo) is often considered one of the most destructive bacterial pathogens causing bacterial leaf blight (BLB), resulting in significant yield and cost losses in rice. In this study, a series of novel derivatives containing the isopropanolamine moiety linked to various substituted phenols and piperazines were designed, synthesized and screened. RESULTS: Antibacterial activity results showed that most compounds had good inhibitory effects on Xoo, among which compound W2 (EC50 = 2.74 µg mL-1) exhibited the most excellent inhibitory activity, and W2 also had a certain curative effect (35.89%) on rice compared to thiodiazole copper (TC) (21.57%). Scanning electron microscopy (SEM) results indicated that compound W2 could cause rupture of the Xoo cell membrane. Subsequently, proteomics and quantitative real-time polymerase chain reaction revealed that compound W2 affected the physiological processes of Xoo and may exert antibacterial activity by targeting the two-component system pathway. Interestingly, W2 upregulated Xoo's methyltransferase to impact on its pathogenicity. CONCLUSION: The present study offers a promising phenolic-piperazine-sopropanolamine compound as an innovative antibacterial strategy by specifically targeting the two-component system pathway and inducing upregulation of methyltransferase to effectively impact Xoo's pathogenicity. © 2024 Society of Chemical Industry.


Assuntos
Antibacterianos , Xanthomonas , Xanthomonas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Fenóis/farmacologia , Fenóis/química , Desenho de Fármacos , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Oryza/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa