Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(25): 4559-4579, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37225434

RESUMO

Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Transdução de Sinais , Camundongos , Masculino , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , N-Acetilglucosaminiltransferases/genética , Camundongos Knockout
2.
Hum Mol Genet ; 31(1): 57-68, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34346496

RESUMO

Ogt-mediated O-GlcNAcylation is enriched in the nervous system and involves in neuronal development, brain function and neurological diseases. However, the roles of Ogt and O-GlcNAcylation in embryonic neurogenesis have remained largely unknown. Here, we show that Ogt is highly expressed in embryonic brain, and Ogt depletion reduces the proliferation of embryonic neural stem cells and migration of new born neurons. Ogt depletion in cultured hippocampal neurons impairs neuronal maturation, including reduced dendritic numbers and length, and immature development of spines. Mechanistically, Ogt depletion decreases the activity of Wnt/ß-catenin signaling. Ectopic ß-catenin rescues neuronal developmental deficits caused by Ogt depletion. Ogt also regulates human cortical neurogenesis in forebrain organoids derived from induced pluripotent stem cells. Our findings reveal the essential roles and mechanisms of Ogt-mediated O-GlcNAc modification in regulating mammalian neuronal development.


Assuntos
N-Acetilglucosaminiltransferases , beta Catenina , Animais , Humanos , Mamíferos , N-Acetilglucosaminiltransferases/genética , Neurogênese/genética , Neurônios , beta Catenina/genética
3.
Hum Mol Genet ; 30(10): 865-879, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33791790

RESUMO

The ten-eleven translocation (Tet) family of dioxygenases convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC-mediated epigenetic modifications play essential roles in diverse biological processes and diseases. Here, we show that Tet proteins and 5hmC display dynamic features during postnatal cardiac development and that Tet2 is the predominant dioxygenase present in heart. Tet2 knockout results in abnormal cardiac function, progressive cardiac hypertrophy and fibrosis. Mechanistically, Tet2 deficiency leads to reduced hydroxymethylation in the cardiac genome and alters the cardiac transcriptome. Mechanistically, Tet2 loss leads to a decrease of Hspa1b expression, a regulator of the extracellular signal-regulated protein kinase (Erk) signaling pathway, which leads to over-activation of Erk signaling. Acute Hspa1b knock down (KD) increased the phosphorylation of Erk and induced hypertrophy of cardiomyocytes, which could be blocked by Erk signaling inhibitor. Consistently, ectopic expression of Hspa1b was able to rescue the deficits of cardiomyocytes induced by Tet2 depletion. Taken together, our study's results reveal the important roles of Tet2-mediated DNA hydroxymethylation in cardiac development and function.


Assuntos
Cardiomegalia/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Fibrose/genética , Proteínas de Choque Térmico HSP70/genética , Coração/crescimento & desenvolvimento , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Metilação de DNA/genética , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/genética , Transcriptoma/genética
4.
J Neuroinflammation ; 20(1): 146, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349834

RESUMO

Previous studies have shown that Ogt-mediated O-GlcNAcylation is essential for neuronal development and function. However, the function of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in astrocytes remains largely unknown. Here we show that Ogt deficiency induces inflammatory activation of astrocytes in vivo and in vitro, and impairs cognitive function of mice. The restoration of O-GlcNAcylation via GlcNAc supplementation inhibits the activation of astrocytes, inflammation and improves the impaired cognitive function of Ogt deficient mice. Mechanistically, Ogt interacts with NF-κB p65 and catalyzes the O-GlcNAcylation of NF-κB p65 in astrocytes. Ogt deficiency induces the activation of NF-κB signaling pathway by promoting Gsk3ß binding. Moreover, Ogt depletion induces the activation of astrocytes derived from human induced pluripotent stem cells. The restoration of O-GlcNAcylation inhibits the activation of astrocytes, inflammation and reduces Aß plaque of AD mice in vitro and in vivo. Collectively, our study reveals a critical function of Ogt-mediated O-GlcNAcylation in astrocytes through regulating NF-κB signaling pathway.


Assuntos
Células-Tronco Pluripotentes Induzidas , NF-kappa B , Animais , Humanos , Camundongos , Acilação , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação , NF-kappa B/metabolismo , Transdução de Sinais
5.
Hum Mol Genet ; 29(16): 2775-2787, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32766784

RESUMO

Adult neurogenesis is regulated by diverse factors including the local environment, i.e. the neurogenic niche. However, whether the lipid in the brain regulates adult neurogenesis and related mechanisms remains largely unknown. In the present study, we found that lipid accumulates in the brain during postnatal neuronal development. Conditional knockout of Fto (cKO) in lipid not only reduced the level of lipid in the brain but also impaired the learning and memory of mice. In addition, Fto deficiency in lipid did not affect the proliferation of adult neural stem cells (aNSCs), but it did inhibit adult neurogenesis by inducing cell apoptosis. Mechanistically, specific deleting Fto in lipid altered gene expression and increased adenosine secretion of adipocytes. The treatment of adenosine promoted the apoptosis of newborn neurons. As a whole, these results reveal the important function of the lipid niche and its associated mechanism in regulating adult neurogenesis.


Assuntos
Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Lipídeos/genética , Neurogênese/genética , Neurônios/metabolismo , Adenosina/genética , Adipócitos/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Encéfalo/metabolismo , Proliferação de Células/genética , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo
6.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(5): 642-650, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986527

RESUMO

In neuronal system, epigenetic modifications are essential for neuronal development, the fate determination of neural stem cells and neuronal function. The dysfunction of epigenetic regulation is closely related to occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease. Abnormally elevated DNA methylation inhibits the expression of some DNA repair-related genes and affects the progression of Huntington's disease. In the brain of Alzheimer's disease patients, the levels of H3K27ac and H3K9ac histone modifications increased. In addition, the alteration of RNA methylation in animal models of Alzheimer's disease and Parkinson's disease showed discrepancy trends. Therefore, epigenetic modifications may serve as potential therapeutic targets for neurodegenerative diseases. Here, we summarize the recent progress of the roles of epigenetic modifications in neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Metilação de DNA , Epigênese Genética , Humanos , Doenças Neurodegenerativas/genética , Doença de Parkinson/genética , Processamento de Proteína Pós-Traducional
7.
Bioorg Med Chem Lett ; 26(5): 1419-27, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26850004

RESUMO

Three novel series of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib were prepared and evaluated in vitro for their cytostatic effects against a human chronic myeloid leukemia (K562), acute myeloid leukemia (HL60), and human leukemia stem-like cell line (KG1a). The structure-activity relationship was analyzed by determining the inhibitory rate of each imatinib analog. Benzene and piperazine rings were necessary groups in these compounds for maintaining inhibitory activities against the K562 and HL60 cell lines. Introducing a trifluoromethyl group significantly enhanced the potency of the compounds against these two cell lines. Surprisingly, some compounds showed significant inhibitory activities against KG1a cells without inhibiting common leukemia cell lines (K562 and HL60). These findings suggest that these compounds are able to inhibit leukemia stem-like cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Mesilato de Imatinib/análogos & derivados , Mesilato de Imatinib/farmacologia , Oxidiazóis/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Mesilato de Imatinib/síntese química , Mesilato de Imatinib/química , Células K562 , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
8.
Sci China Life Sci ; 67(7): 1427-1440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523237

RESUMO

Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.


Assuntos
Cognição , Fucosiltransferases , Integrina alfa6 , Neurogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Neurogênese/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Integrina alfa6/metabolismo , Integrina alfa6/genética , Cognição/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Diferenciação Celular , Proliferação de Células , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Comput Intell Neurosci ; 2022: 7193234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401729

RESUMO

Human posture equipment technology has advanced significantly thanks to advances in deep learning and machine vision. Even the most advanced models may not be able to predict all body joints accurately. This paper proposes an adaptive generative adversarial network to improve the human posture detection algorithm in order to address this issue. GAN is used in the algorithm to detect human posture improvement. The algorithm uses OpenPose to detect and connect keypoints and then generates heat maps in the GAN system model. During the training process, the confidence evaluation mechanism is added to the system model. The generator predicts posture, while the resolver refines human joints over time. And, by using normalization technologies in the confidence evaluation mechanism, the generator can pay more attention to the prominent body joints, improving the algorithm's body detection accuracy of nodes. In MPII, LSP, and FLIC datasets, the proposed algorithm has shown to have a good detection effect. Its positioning accuracy is about 95.37 percent, and it can accurately locate the joints of the entire body. Several other algorithms are outperformed by this one. The algorithm described in this article has the best simultaneous runtime in the LSP dataset.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Postura
10.
Cells ; 11(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455963

RESUMO

Nicotinamide adenine dinucleotide hydrate (NAD+) acts as the essential component of the tricarboxylic citric acid (TCA) cycle and has important functions in diverse biological processes. However, the roles of NAD+ in regulating adult neural stem/progenitor cells (aNSPCs) remain largely unknown. Here, we show that NAD+ exposure leads to the reduced proliferation and neuronal differentiation of aNSPCs and induces the apoptosis of aNSPCs. In addition, NAD+ exposure inhibits the morphological development of neurons. Mechanistically, RNA sequencing revealed that the transcriptome of aNSPCs is altered by NAD+ exposure. NAD+ exposure significantly decreases the expression of multiple genes related to ATP metabolism and the PI3k-Akt signaling pathway. Collectively, our findings provide some insights into the roles and mechanisms in which NAD+ regulates aNSPCs and neuronal development.


Assuntos
NAD , Células-Tronco Neurais , Proliferação de Células , NAD/metabolismo , Células-Tronco Neurais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
11.
Front Cell Dev Biol ; 10: 903179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721485

RESUMO

Although previous studies have shown that an enriched environment (EE) promotes neurogenesis and alters DNA and histone modifications, it remains largely unknown whether an EE affects epitranscriptome in the context of neuronal development. Here, we showed that EE exposure enhanced the pool of adult neural stem/progenitor cells (aNSPCs) and promoted neuronal differentiation of aNSPCs. EE exposure also improved cognitive capabilities and altered the expression of genes relating to neuronal development, neurogenesis, and memory. N 6-Methyladenosine (m6A) immunoprecipitation combined with deep sequencing (MeRIP-seq) data analysis revealed that EE exposure increased the global level of m6A and led to differential m6A mRNA modification. Differential m6A modification-associated genes are involved in neuronal development, neurogenesis, and so on. Notably, EE exposure decreased the protein level of m6A eraser Fto, but did not affect the protein level of m6A writers METTL3 and METTL14. Taken together, our results suggest that enriched environment exposure induces differential m6A mRNA modification and adds a novel layer to the interaction between the environment and epigenetics in the context of postnatal neuronal development.

12.
Metabolism ; 120: 154777, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865898

RESUMO

AIM: Our previous results showed that Colgalt1 knock-out resulted in fetal death on day E11.5, and collagen secretion was retarded. This study aimed to elucidate the role of Collagen ß(1-O) galactosyltransferase 2 (Colgalt2) in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). METHODS: Colgalt2-/- mice were fed a high-fat diet (HFD) or methionine-and choline-deficient diet (MCD). Nanopore long-read RNA-Seq analysis of liver tissues was used to profile genomic variation. In vitro, hepatocyte steatosis and differentiation of primary pre-adipocytes were induced. RESULTS: Colgalt2-/- mice exhibited lipodystrophy, increased body weight, and hepatic lipid accumulation at 6 weeks of age. Colgalt2 deficiency aggravated hepatic steatosis in mice fed an HFD or a standard laboratory chow diet. Colgalt2 deficiency promotes steatohepatitis in MCD-fed mice. In HFD mice, Colgalt2 deficiency caused lipodystrophy and decreased plasma HMW, total adiponectin, and leptin levels. Colgalt2 deficiency also reduced circulating HMW/Total adiponectin in mice fed a HFD diet without differences of adiponectin mRNA and protein level in WT and Colgalt2-/- mice. The nanopore long-read RNA-Seq analysis results revealed transcriptional changes in the adiponectin receptor downstream signaling pathway and lipogenic genes, including the AMPK signaling pathway, adipocytokine signaling pathway, and lipid metabolism (Cidea, Cidec, CD36, and PPARγ). Colgalt2 deficiency did not promote lipid accumulation in OA-induced HepG2 cells or primary hepatocytes. However, Colgalt2 deficiency inhibited adipogenesis and reduced PPARγ, adipogenesis-related transcription factors, and expression during adipocyte differentiation. CONCLUSIONS: In mice, Colgalt2 deficiency contributes to lipodystrophy and promotes NAFLD related to HMW adiponectin. These results suggest that Colgalt2 could be a novel and promising therapeutic strategy for the treatment of NAFLD.


Assuntos
Adiponectina/metabolismo , Galactosiltransferases/genética , Lipodistrofia/genética , Hepatopatia Gordurosa não Alcoólica/genética , Tecido Adiposo Branco/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Galactosiltransferases/fisiologia , Metabolismo dos Lipídeos/genética , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
13.
Stem Cell Reports ; 16(12): 2988-3004, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34798064

RESUMO

RYBP (Ring1 and YY1 binding protein), an essential component of the Polycomb repressive complex 1 (PRC1), plays pivotal roles in development and diseases. However, the roles of Rybp in neuronal development remains completely unknown. In the present study, we have shown that the depletion of Rybp inhibits proliferation and promotes neuronal differentiation of embryonic neural progenitor cells (eNPCs). In addition, Rybp deficiency impairs the morphological development of neurons. Mechanistically, Rybp deficiency does not affect the global level of ubiquitination of H2A, but it inhibits Notch signaling pathway in eNPCs. The direct interaction between RYBP and CIR1 facilitates the binding of RBPJ to Notch intracellular domain (NICD) and consequently activated Notch signaling. Rybp loss promotes CIR1 competing with RBPJ to bind with NICD, and inhibits Notch signaling. Furthermore, ectopic Hes5, Notch signaling downstream target, rescues Rybp-deficiency-induced deficits. Collectively, our findings show that RYBP regulates embryonic neurogenesis and neuronal development through modulating Notch signaling in a PRC1-independent manner.


Assuntos
Embrião de Mamíferos/metabolismo , Neurogênese , Complexo Repressor Polycomb 1/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/embriologia , Diferenciação Celular , Proliferação de Células , Forma Celular , Feminino , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Repressoras/deficiência , Transcriptoma/genética
14.
Front Cell Dev Biol ; 9: 644375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778243

RESUMO

Tet (Ten eleven translocation) family proteins-mediated 5-hydroxymethylcytosine (5hmC) is highly enriched in the neuronal system, and is involved in diverse biological processes and diseases. However, the function of 5hmC in astrocyte remains completely unknown. In the present study, we show that Tet1 deficiency alters astrocyte morphology and impairs neuronal function. Specific deletion of Tet1 in astrocyte impairs learning and memory ability of mice. Using 5hmC high-throughput DNA sequencing and RNA sequencing, we present the distribution of 5hmC among genomic features in astrocyte and show that Tet1 deficiency induces differentially hydroxymethylated regions (DhMRs) and alters gene expression. Mechanistically, we found that Tet1 deficiency leads to the abnormal Ca2+ signaling by regulating the expression of GluA1, which can be rescued by ectopic GluA1. Collectively, our findings suggest that Tet1 plays important function in astrocyte physiology by regulating Ca2+ signaling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa