Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 236(3): 1075-1088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842781

RESUMO

Flower color, which is determined by various chemical pigments, is a vital trait for ornamental plants, in which anthocyanin is a major component. However, the epigenetic regulation of anthocyanin biosynthesis remains poorly understood. During chrysanthemum cultivation, we found a heterochromatic chrysanthemum accession (YP) whose progeny generated by asexual reproduction contained both yellow-flowered (YP-Y) and pink-flowered (YP-P) plants. In this study, we aimed to elucidate the epigenetic mechanisms of different flower colors in the YP plant progeny. Metabolome and transcriptome analyses revealed that the difference in flower color between YP-Y and YP-P was caused by expression variation of the anthocyanin biosynthesis gene CmMYB6. Bisulfite sequencing revealed that methylation at the CmMYB6 promoter, especially in the CHH context, was higher in YP-Y than YP-P. After demethylation of the CmMYB6 promoter using the dCas9-TET1cd system, the flower color returned from yellow to pink. Furthermore, the methylation status of the CmMYB6 promoter was higher in YP-Y over three consecutive generations, indicating that this methylation status was heritable mitotically. Finally, investigation of other chrysanthemum cultivars showed that the methylation of CmMYB6 decreased gradually with the increase in anthocyanin content. These results lay an epigenetic foundation for the improvement of flower color in horticultural plants.


Assuntos
Chrysanthemum , Antocianinas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Cor , Epigênese Genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012653

RESUMO

Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Inseticidas/farmacologia , Nitrocompostos/farmacologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Sinapsinas/genética , Transmissão Sináptica , Tiametoxam/farmacologia
3.
Lab Anim ; 58(1): 52-64, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37702462

RESUMO

To understand the epizootiologic characteristics of pathogens and opportunistic infections in one Beagle dog production colony and three research facilities, viruses and mycoplasma were detected in 1777 samples collected from Beagle dogs in China by polymerase chain reaction/reverse transcription polymerase chain reaction, and bacteria were isolated and identified by 16S rRNA sequence analysis. In addition, genotyping of the major circulating viruses was carried out by amplification of gene fragments and homology analysis. Canine coronavirus (CCoV), Escherichia coli, canine parvovirus (CPV), Bordetella bronchiseptica, Clostridium perfringens, Mycoplasma cynos, Klebsiella pneumoniae, Streptococcus canis, canine astrovirus (CaAstV), canine kobuvirus (CaKV), Pseudomonas aeruginosa, Proteus mirabilis, Macrococcus canis, Pasteurella canis, canine bocavirus (CBoV) and canine adenovirus (CAdV) were detected in the samples. Single, double, triple and quadruple infections accounted for 6.6%, 1.4%, 1.2% and 0.96% of samples, respectively. CCoV strains in 81 samples included three genotypes, CCoV-I, CCoV-IIa and CCoV-IIb, by analysis of S gene. The rate of single infection of CCoV-I, CCoV-IIa or CCoV-IIb was 19%, 38% or 7.4% respectively. The double and triple infection rates of CCoV were 32.8% and 2.5% respectively. All CPV strains in 36 samples belonged to CPV-2c. There were three amino acid differences in the Fiber protein of CAdV-positive sample QD2022, compared with the reference strain Toronto A26/61 and the vaccine strain YCA-18. These results suggest that CCoV and CPV are primary infectious agents, and that these two viruses were often identified in mixed infections, or coinfections alongside mycoplasma or other bacteria. These results will provide the basis for improvements in prevention and control of naturally occurring infectious diseases in Beagle dog production colonies and research facilities.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Parvovirus Canino , Cães , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , RNA Ribossômico 16S/genética , Doenças do Cão/epidemiologia , Reação em Cadeia da Polimerase , China/epidemiologia , Coronavirus Canino/genética , Parvovirus Canino/genética
4.
Front Oncol ; 13: 1267838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941552

RESUMO

Objective: This study aimed to explore the radiomics model based on magnetic resonance imaging (MRI) T2WI and compare the value of different machine algorithms in preoperatively predicting tumor budding (TB) grading in rectal cancer. Methods: A retrospective study was conducted on 266 patients with preoperative rectal MRI examinations, who underwent complete surgical resection and confirmed pathological diagnosis of rectal cancer. Among them, patients from Qingdao West Coast Hospital were assigned as the training group (n=172), while patients from other hospitals were assigned as the external validation group (n=94). Regions of interest (ROIs) were delineated, and image features were extracted and dimensionally reduced using the Least Absolute Shrinkage and Selection Operator (LASSO). Eight machine algorithms were used to construct the models, and the diagnostic performance of the models was evaluated and compared using receiver operating characteristic (ROC) curves and the area under the curve (AUC), as well as clinical utility assessment using decision curve analysis (DCA). Results: A total of 1197 features were extracted, and after feature selection and dimension reduction, 11 image features related to TB grading were obtained. Among the eight algorithm models, the support vector machine (SVM) algorithm achieved the best diagnostic performance, with accuracy, sensitivity, and specificity of 0.826, 0.949, and 0.723 in the training group, and 0.713, 0.579, and 0.804 in the validation group, respectively. DCA demonstrated the clinical utility of this radiomics model. Conclusion: The radiomics model based on MR T2WI can provide an effective and noninvasive method for preoperative TB grading assessment in patients with rectal cancer.

5.
Viruses ; 12(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204363

RESUMO

Ostrich diseases characterized by paralysis have been breaking out in broad areas of China since 2015, causing major damage to the ostrich breeding industry in China. This report describes a parvovirus detected in ostriches from four different regions. The entire genomes of four parvovirus strains were sequenced following amplification by PCR, and we conducted comprehensive analysis of the ostrich parvovirus genome. Results showed that the length genomes of the parvovirus contained two open reading frames. Ostrich parvovirus (OsPV) is a branch of goose parvovirus (GPV). Genetic distance analysis revealed a close relationship between the parvovirus and goose parvovirus strains from China, with the closest being the 2016 goose parvovirus RC16 strain from Chongqing. This is the first report of a parvovirus in ostriches. However, whether OsPV is the pathogen of ostrich paralysis remains uncertain. This study contributes new information about the evolution and epidemiology of parvovirus in China, which provides a new way for the study of paralysis in ostriches.


Assuntos
Evolução Molecular , Genoma Viral , Infecções por Parvoviridae/virologia , Parvovirus/fisiologia , Struthioniformes/virologia , Animais , Sequência de Bases , Testes Genéticos , Genômica/métodos , Infecções por Parvoviridae/diagnóstico , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa