Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857860

RESUMO

5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage and malondialdehyde (MDA) production which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9 and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.

2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474581

RESUMO

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Assuntos
Traumatismo por Reperfusão Miocárdica , Thymelaeaceae , Ratos , Animais , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Endotélio/metabolismo , Thymelaeaceae/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Bioorg Med Chem Lett ; 28(8): 1324-1329, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548572

RESUMO

A series of (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)pyrrolidin-2-one derivatives were designed, synthesized, and evaluated for their anticonvulsant activities. In the preliminary screening, compounds 5, 6a-6f and 6h-6i showed promising anticonvulsant activities in MES model, while 6f and 6g represented protection against seizures at doses of 100 mg/kg and 0.5 h in scPTZ model. The most active compound 6d had a high-degree protection against the MES-induced seizures with ED50 value of 4.3 mg/kg and TD50 value of 160.9 mg/kg after intraperitoneal (i.p.) injection in mice, which provided 6d in a high protective index (TD50/ED50) of 37.4 comparable to the reference drugs. Beyond that, 6d has been selected and evaluated in vitro experiment to estimate the activation impact. Apparently, 6d clearly inhibits the Nav1.1 channel. Our preliminary results provide new insights for the development of small-molecule activators targeting specifically Nav1.1 channels to design potential drugs for treating epilepsy. The computational parameters, such as homology modeling, docking study, and ADME prediction, were made to exploit the results.


Assuntos
Anticonvulsivantes/farmacologia , Benzodioxóis/farmacologia , Pirrolidinonas/farmacologia , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Benzodioxóis/síntese química , Benzodioxóis/química , Sítios de Ligação , Células CHO , Cricetulus , Desenho de Fármacos , Electrophorus , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fenobarbital/farmacologia , Fenitoína/farmacologia , Pirrolidinonas/síntese química , Pirrolidinonas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
4.
ACS Chem Neurosci ; 13(6): 834-845, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35212221

RESUMO

Sodium channel blockers are important antiseizure drugs. Since the launch of phenobarbital in 1912, it has a development history of nearly 100 years. However, because of the confounding symptoms, complications, and complex intrinsic pathogenesis of epilepsy, the design and development of blockers specifically targeting sodium channels as antiseizure drugs are difficult and rarely reported. In this study, we designed and synthesized a series of novel benzo[d]isoxazole derivatives as anticonvulsants. Among them, the most potent Z-6b displayed high protection against the MES-induced seizures with an ED50 value of 20.5 mg/kg and a high protective index (TD50/ED50) of 10.3. In addition, Z-6b significantly inhibited NaV1.1 channels in patch-clamp experiments but almost did not inhibit NaV1.2, NaV1.3, and NaV1.6 channels. These findings strongly support the hypothesis that new benzo[d]isoxazole derivatives display anticonvulsant activity by selectively blocking voltage-gated sodium channel NaV1.1, which provides good alternatives for developing selective NaV1.1 channel blockers as antiseizure drugs in the future.


Assuntos
Anticonvulsivantes , Canais de Sódio Disparados por Voltagem , Anticonvulsivantes/farmacologia , Humanos , Isoxazóis , Canal de Sódio Disparado por Voltagem NAV1.7 , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
Eur J Pharmacol ; 920: 174811, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182546

RESUMO

5(S)-5-carboxystrictosidine (5-CS) is a compound found in Mappianthus iodoides Hand.-Mazz., root, a traditional Chinese medicine used for the treatment of coronary artery disease. In this study, we investigated whether 5-CS protects heart against I/R injury. Sprague-Dawley rats were treated with 5-CS intraperitoneally for 7 days before the experiment. Hearts were perfused for 20 min global ischemia and 180 min reperfusion. 5-CS significantly inhibited an increase in the post-ischemic left ventricular end-diastolic pressure (LVEDP) and improved the post-ischemic left ventricular developed pressure (LVDP), dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow as compared with sham group. Pretreatment with 5-hydroxydecanoic acid (5-HD), an inhibitor of mitochondrial KATP channel, for 10 min before ischemia attenuated the improvement of LVEDP, LVDP, dP/dt maximum and dP/dt minimum rates of pressure change, and coronary flow induced by 5-CS. 5-CS markedly decreased the infarct size and attenuated the increased lactate dehydrogenase (LDH) level in effluent during reperfusion. Pretreatment with 5-HD also blocked these protective effects of 5-CS. 5-CS increased Mn-SOD, catalase, and HO-1 levels decreased by I/R injury and pretreatment of 5-HD blocked the 5-CS effects. Increases in Bax, cleaved caspase-3 and cytochrome c levels, caspase-3 and caspase-9 activity, and decrease in Bcl-2 level by I/R injury were attenuated by 5-CS treatment and pretreatment of 5-HD blocked its effects. These results suggest that the protective effects of 5-CS against myocardial I/R injury may be partly related to activating antioxidant enzymes and suppressing apoptosis through opening mitochondrial KATP channels.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Canais KATP , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Canais de Potássio , Ratos , Ratos Sprague-Dawley
6.
FEBS Lett ; 585(22): 3569-76, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22024481

RESUMO

Aurora B kinase (Aurora-B) functions in chromosome segregation and cleavage of polar spindle microtubules. However, its role in cellular senescence remains elusive. Here, we investigated Aurora-B effects on cellular senescence in human fibroblasts and endothelial cells. Aurora-B levels were reduced during replicative senescence and premature senescence by adriamycin. Aurora-B overexpression in old cells partially reversed senescence phenotypes. In contrast, Aurora-B down-regulation accelerated cellular senescence. p53 knockdown but not p16 knockdown inhibited cellular senescence by Aurora-B reduction. These results suggest that Aurora-B might function in the regulation of cellular senescence of human primary cells via a p53-dependent pathway.


Assuntos
Senescência Celular , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Aurora Quinase B , Aurora Quinases , Inibidor p16 de Quinase Dependente de Ciclina , Regulação para Baixo , Células Endoteliais/citologia , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Transfecção , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa