Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(6): 945-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974357

RESUMO

Camellia oleifera is a crucial cash crop in the southern region of China. Timely flowering is a crucial characteristic for maximizing crop productivity. Nevertheless, the cold temperature and wet weather throughout the fall and winter seasons in South China impact the timing of flowering and the yield produced by C. oleifera. This study examined the miRNAs, transcriptomes, and phytohormones that are part of the flowering time regulatory networks in distinct varieties of C. oleifera (Sep, Oct, and Nov). This study provides evidence that phytohormones significantly impact the timing of flowering in C. oleifera leaves. There is a positive correlation between the accumulation variations of zeatin (cZ), brassinolide (BL), salicylic acid (SA), 1-amino cyclopropane carboxylic acid (ACC), and jasmonic acid (JA) and flowering time. This means that blooming occurs earlier when the quantity of these substances in leaves increases. Abscisic acid (ABA), trans-zeatin-riboside (tZR), dihydrozeatin (dh-Z), and IP (N6-Isopentenyladenine) exhibit contrasting effects. Furthermore, both miR156 and miR172 play a crucial function in regulating flowering time in C. oleifera leaves by modulating the expression of SOC1, primarily through the miR156-SPL and miR172-AP2 pathways. These findings establish a strong basis for future research endeavors focused on examining the molecular network associated with the flowering period of C. oleifera and controlling flowering time management through external treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01473-2.

2.
Physiol Mol Biol Plants ; 28(5): 935-946, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722507

RESUMO

Moringa oleifera, is commonly cultivated as a vegetable in tropical and subtropical regions because of nutritional and medicinal benefits of its fruits, immature pods, leaves, and flowers. Flowering at the right time is one of the important traits for crop yield in M.oleifera. Under normal conditions, photoperiod is one of the key factors in determining when plant flower. However, the molecular mechanism underlying the effects of a long-day photoperiod on Moringa is not clearly understood. In the present study, deep RNA sequencing and sugar metabolome were conducted of Moringa leaves under long-day photoperiod. As a result, differentially expressed genes were significantly associated with starch and sucrose pathway and the circadian rhythm-plant pathway. In starch and sucrose pathway, sucrose, fructose, trehalose, glucose, and maltose exhibited pronounced rhythmicity over 24 h, and TPS (trehalose-6-phosphate synthase) genes constituted key regulatory genes. In an Arabidopsis overexpression line hosting the MoTPS1 or MoTPS2 genes, flowering occurred earlier under a short-day photoperiod. These results will support molecular breeding of Moringa and may help clarify to genetic architecture of long-day photoperiod related traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01186-4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa