Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 123(7): 1164-1177, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32636467

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) are linked to cancer progression and dissemination, yet less is known about their regulation and impact on epithelial-mesenchymal transition (EMT). METHODS: An integrative translational approach combining systematic computational analyses of The Cancer Genome Atlas cancer cohorts with CRISPR genetics, biochemistry and immunohistochemistry methodologies to identify and assess the role of human DUBs in EMT. RESULTS: We identify a previously undiscovered biological function of STAM-binding protein like 1 (STAMBPL1) deubiquitinase in the EMT process in lung and breast carcinomas. We show that STAMBPL1 expression can be regulated by mutant p53 and that its catalytic activity is required to affect the transcription factor SNAI1. Accordingly, genetic depletion and CRISPR-mediated gene knockout of STAMBPL1 leads to marked recovery of epithelial markers, SNAI1 destabilisation and impaired migratory capacity of cancer cells. Reversely, STAMBPL1 expression reprogrammes cells towards a mesenchymal phenotype. A significant STAMBPL1-SNAI1 co-signature was observed across multiple tumour types. Importantly, STAMBPL1 is highly expressed in metastatic tissues compared to matched primary tumour of the same lung cancer patient and its expression predicts poor prognosis. CONCLUSIONS: Our study provides a novel concept of oncogenic regulation of a DUB and presents a new role and predictive value of STAMBPL1 in the EMT process across multiple carcinomas.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Peptídeo Hidrolases/fisiologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/fisiologia , Feminino , Humanos , Peptídeo Hidrolases/análise , Fatores de Transcrição da Família Snail/análise , Fatores de Transcrição da Família Snail/fisiologia , Proteína Supressora de Tumor p53/genética
2.
An Acad Bras Cienc ; 92(4): e20200249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237144

RESUMO

The overweight population is growing in the world, and the search for obesity-associated mechanisms is important for a better understanding of this disease. Few studies with the FTO gene and miRs show how they associate to obesity and how they can impact this disease. The aim of this study was to verify the relationship between the FTO gene and the hsa-miR-150-5p expression with overweight/obesity, lipid profile, and fast blood glucose. Men and women (18 years older or above), with body mass index ≥ 18.5 kg/m2, were enrolled in the present study and the FTO gene and hsa-miR-150-5p expression, biochemical parameters of blood and anthropometric measurements were analyzed. The results highlight that the FTO gene expression is associated to obesity (p 0.029), LDL-C (p 0.02) and fasting blood glucose (p 0.02), but not with triglycerides (p 0.69), total cholesterol (p 0.21), and HDL-C (p 0.24). The hsa-miR-150-5p is not associated to obesity (p 0.84), triglycerides (p 0.57), total cholesterol (p 0.51), HDL-C (p 0.75), LDL-C (p 0.32), and fasting blood glucose (p 0.42). The FTO gene expression is related to obesity, LDL-C and blood fasting glucose, representing a good molecular marker for obesity.


Assuntos
Glicemia , MicroRNAs , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Índice de Massa Corporal , Feminino , Humanos , Lipídeos , Masculino , MicroRNAs/genética , Obesidade/genética , Sobrepeso/genética , Gordura Subcutânea , Triglicerídeos
3.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647415

RESUMO

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Assuntos
Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Coenzima A Ligases/genética , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Ratos Wistar
4.
J Cell Physiol ; 232(5): 958-966, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27736004

RESUMO

Mitochondria play a critical role in several cellular processes and cellular homeostasis. Mitochondrion dysfunction has been correlated with numerous metabolic diseases such as obesity and type 2 diabetes. MicroRNAs are non-coding RNAs that have emerged as key regulators of cell metabolism. The microRNAs act as central regulators of metabolic gene networks by leading to the degradation of their target messenger RNA or repression of protein translation. In addition, vesicular and non-vesicular circulating miRNAs exhibit a potential role as mediators of the cross-talk between the skeletal muscle and other tissues/organs. In this review, we will focus on the emerging knowledge of miRNAs controlling mitochondrial function and insulin signaling in skeletal muscle cells. J. Cell. Physiol. 232: 958-966, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Insulina/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas , Transdução de Sinais , Humanos
5.
Biochim Biophys Acta ; 1832(10): 1591-604, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643711

RESUMO

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500µM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with ß-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and ß-oxidation of fatty acids.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Animais , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ácido Palmítico/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
6.
J Pineal Res ; 57(2): 155-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981026

RESUMO

Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.


Assuntos
Resistência à Insulina/fisiologia , Melatonina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
7.
Mol Metab ; 51: 101226, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33812060

RESUMO

OBJECTIVE: MicroRNAs (miRNA) are known to regulate the expression of genes involved in several physiological processes including metabolism, mitochondrial biogenesis, proliferation, differentiation, and cell death. METHODS: Using "in silico" analyses, we identified 219 unique miRNAs that potentially bind to the 3'UTR region of a critical mitochondrial regulator, the peroxisome proliferator-activated receptor gamma coactivator (PGC) 1 alpha (Pgc1α). Of the 219 candidate miRNAs, miR-696 had one of the highest interactions at the 3'UTR of Pgc1α, suggesting that miR-696 may be involved in the regulation of Pgc1α. RESULTS: Consistent with this hypothesis, we found that miR-696 was highly expressed in the skeletal muscle of STZ-induced diabetic mice and chronic high-fat-fed mice. C2C12 muscle cells exposed to palmitic acid also exhibited a higher expression of miR-696. This increased expression corresponded with a reduced expression of oxidative metabolism genes and reduced mitochondrial respiration. Importantly, reducing miR-696 reversed decreases in mitochondrial activity in response to palmitic acid. Using C2C12 cells treated with the AMP-activated protein kinase (AMPK) activator AICAR and skeletal muscle from AMPKα2 dominant-negative (DN) mice, we found that the signaling mechanism regulating miR-696 did not involve AMPK. In contrast, overexpression of SNF1-AMPK-related kinase (SNARK) in C2C12 cells increased miR-696 transcription while knockdown of SNARK significantly decreased miR-696. Moreover, muscle-specific transgenic mice overexpressing SNARK exhibited a lower expression of Pgc1α, elevated levels of miR-696, and reduced amounts of spontaneous activity. CONCLUSIONS: Our findings demonstrate that metabolic stress increases miR-696 expression in skeletal muscle cells, which in turn inhibits Pgc1α, reducing mitochondrial function. SNARK plays a role in this process as a metabolic stress signaling molecule inducing the expression of miR-696.


Assuntos
Diabetes Mellitus Experimental/patologia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regiões 3' não Traduzidas , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
8.
J Nutr Biochem ; 55: 76-88, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413492

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57Bl/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, α-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondrial function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1α, Pparα, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function.


Assuntos
Óleos de Peixe/farmacologia , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Obesidade/dietoterapia , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Catalase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Obesidade/etiologia , Proteínas/genética , Proteínas/metabolismo
9.
Pain ; 156(3): 504-513, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25687543

RESUMO

Treatment of neuropathic pain is a clinical challenge likely because of the time-dependent changes in many neurotransmitter systems, growth factors, ionic channels, membrane receptors, transcription factors, and recruitment of different cell types. Conversely, an increasing number of reports have shown the ability of extended and regular physical exercise in alleviating neuropathic pain throughout a wide range of mechanisms. In this study, we investigate the effect of swim exercise on molecules associated with initiation and maintenance of nerve injury-induced neuropathic pain. BALB/c mice were submitted to partial ligation of the sciatic nerve followed by a 5-week aerobic exercise program. Physical training reversed mechanical hypersensitivity, which lasted for an additional 4 weeks after exercise interruption. Swim exercise normalized nerve injury-induced nerve growth factor, and brain-derived neurotrophic factor (BDNF) enhanced expression in the dorsal root ganglion, but had no effect on the glial-derived neurotrophic factor. However, only BDNF remained at low levels after exercise interruption. In addition, exercise training significantly reduced the phosphorylation status of PLCγ-1, but not CREB, in the spinal cord dorsal horn in response to nerve injury. Finally, prolonged swim exercise reversed astrocyte and microglia hyperactivity in the dorsal horn after nerve lesion, which remained normalized after training cessation. Together, these results demonstrate that exercise therapy induces long-lasting analgesia through various mechanisms associated with the onset and advanced stages of neuropathy. Moreover, the data support further studies to clarify whether appropriate exercise intensity, volume, and duration can also cause long-lasting pain relief in patients with neuropathic pain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Terapia por Exercício/métodos , Neuralgia/reabilitação , Neuroglia/metabolismo , Regulação para Cima/fisiologia , Adaptação Fisiológica , Animais , Proteína de Ligação a CREB/metabolismo , Citrato (si)-Sintase , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Coração/fisiopatologia , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/fisiopatologia , Neuralgia/complicações , Neuralgia/patologia , Neuroglia/patologia , Medição da Dor , Limiar da Dor/fisiologia , Fosfolipase C gama/metabolismo , Fosforilação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa