Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 65(4): 603-10, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12566088

RESUMO

In the present study, we outlined the part of the molecule mediating the prominent pro-apoptotic effect of the Michael adduct of ascorbic acid with p-chloro-nitrostyrene, a new synthetic phosphatase inhibitor. The nitrostyrene (NS) moiety was identified as the structure essential for apoptosis induction. NS and its ascorbic acid adducts displayed LC(50) values of 10-25 microM with no significant reduction of potency in okadaic acid resistant cells overexpressing the MDR1 P-glycoprotein. Induction of apoptosis by NS derivatives and the protein phosphatase 2A inhibitor cantharidic acid was proven by the analysis of caspase-3 activation and subsequent fragmentation of DNA. Further structure activity analysis revealed the necessity of the nitro group at the beta-position of the side chain. The pro-apoptotic potential of adducts of NS with pyrimidine- or pyridine-derivatives varied between NS and a progressive reduction in potency up to a nearly complete loss of cytotoxicity. Substitutions at the benzene core of NS suggested a prominent enhancement of toxicity only by substitutions at the 2- or 3-position. Heterocyclic aromatics can substitute for the benzene ring of NS albeit with a 2-3-fold reduced potency. In conclusion, nitrostyrene was identified as the core structure mediating the pro-apoptotic effect of a new synthetic phosphatase inhibitor. Further studies defined a nitrovinyl side chain attached to an aromatic ring as the pharmacophore structure of a new group of pro-apoptotic agents. These observations present the basis for the development of a new group of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Estirenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Estirenos/síntese química , Estirenos/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa