Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nucleic Acids Res ; 49(11): 6569-6586, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107018

RESUMO

Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , DnaB Helicases/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases/metabolismo , Modelos Moleculares , Conformação Proteica , Serina/química
2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674944

RESUMO

DciA is the ancestral bacterial replicative helicase loader, punctually replaced during evolution by the DnaC/I loaders of phage origin. DnaC helps the helicase to load onto DNA by cracking open the hexameric ring, but the mechanism of loading by DciA remains unknown. We demonstrate by electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and biochemistry experiments that DciA, which folds into a KH-like domain, interacts with not only single-stranded but also double-stranded DNA, in an atypical mode. Some point mutations of the long α-helix 1 demonstrate its importance in the interaction of DciA for various DNA substrates mimicking single-stranded, double-stranded, and forked DNA. Some of these mutations also affect the loading of the helicase by DciA. We come to the hypothesis that DciA could be a DNA chaperone by intercalating itself between the two DNA strands to stabilize it. This work allows us to propose that the direct interaction of DciA with DNA could play a role in the loading mechanism of the helicase.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , DNA Helicases/metabolismo , DNA , Replicação do DNA , Bactérias/metabolismo , DNA de Cadeia Simples , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
3.
J Struct Biol ; 212(1): 107573, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679070

RESUMO

DciA is a newly discovered bacterial protein involved in loading the replicative helicase DnaB onto DNA at the initiation step of chromosome replication. Its three-dimensional structure is composed of a folded N-terminal domain (residues 1-111) resembling K Homology domains and a long disordered C-terminal tail (residues 112-157) which structure-activity relationship remains to be elucidated. In the present study on Vibrio cholerae DciA, we emphasize the importance of its disordered region to load DnaB onto DNA using surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). Then we characterize the conformational ensemble of the full-length protein using a combination of circular dichroism (CD), small angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The atomic-level structural ensemble generated by MD simulations is in very good agreement with SAXS data. From initial conformations of the C-terminal tail without any secondary structure, our simulations bring to light several transient helical structures in this segment, which might be molecular recognition features (MoRFs) for the binding to DnaB and its recruitment and loading onto DNA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DnaB Helicases/química , DnaB Helicases/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Vibrio cholerae/metabolismo , Difração de Raios X/métodos
4.
J Struct Biol ; 201(2): 88-99, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28823563

RESUMO

We have previously described a highly diverse library of artificial repeat proteins based on thermostable HEAT-like repeats, named αRep. αReps binding specifically to proteins difficult to crystallize have been selected and in several examples, they made possible the crystallization of these proteins. To further simplify the production and crystallization experiments we have explored the production of chimeric proteins corresponding to covalent association between the targets and their specific binders strengthened by a linker. Although chimeric proteins with expression partners are classically used to enhance expression, these fusions cannot usually be used for crystallization. With specific expression partners like a cognate αRep this is no longer true, and chimeric proteins can be expressed purified and crystallized. αRep selection by phage display suppose that at least a small amount of the target protein should be produced to be used as a bait for selection and this might, in some cases, be difficult. We have therefore transferred the αRep library in a new construction adapted to selection by protein complementation assay (PCA). This new procedure allows to select specific binders by direct interaction with the target in the cytoplasm of the bacteria and consequently does not require preliminary purification of target protein. αRep binders selected by PCA or by phage display can be used to enhance expression, stability, solubility and crystallogenesis of proteins that are otherwise difficult to express, purify and/or crystallize.


Assuntos
Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Proteínas de Bactérias/química , Cristalização/métodos , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Histidina Quinase/química , Biblioteca de Peptídeos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Sequências Repetitivas de Aminoácidos , Tetra-Hidrofolato Desidrogenase/química
5.
Nucleic Acids Res ; 42(8): 5302-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500202

RESUMO

Natural transformation contributes to the maintenance and to the evolution of the bacterial genomes. In Streptococcus pneumoniae, this function is reached by achieving the competence state, which is under the control of the ComD-ComE two-component system. We present the crystal and solution structures of ComE. We mimicked the active and non-active states by using the phosphorylated mimetic ComE(D58E) and the unphosphorylatable ComE(D58A) mutants. In the crystal, full-length ComE(D58A) dimerizes through its canonical REC receiver domain but with an atypical mode, which is also adopted by the isolated REC(D58A) and REC(D58E). The LytTR domain adopts a tandem arrangement consistent with the two direct repeats of its promoters. However ComE(D58A) is monomeric in solution, as seen by SAXS, by contrast to ComE(D58E) that dimerizes. For both, a relative mobility between the two domains is assumed. Based on these results we propose two possible ways for activation of ComE by phosphorylation.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Fosforilação , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Nucleic Acids Res ; 42(11): 7395-408, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24782530

RESUMO

Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA.


Assuntos
Proteínas de Bactérias/química , DNA de Cadeia Simples/metabolismo , Proteínas de Membrana/química , Recombinases Rec A/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Molecular , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Recombinases Rec A/metabolismo , Streptococcus pneumoniae
7.
Proc Natl Acad Sci U S A ; 109(37): E2466-75, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22904190

RESUMO

Transformation promotes genome plasticity in bacteria via RecA-driven homologous recombination. In the gram-positive human pathogen Streptococcus pneumoniae, the transformasome a multiprotein complex, internalizes, protects, and processes transforming DNA to generate chromosomal recombinants. Double-stranded DNA is internalized as single strands, onto which the transformation-dedicated DNA processing protein A (DprA) ensures the loading of RecA to form presynaptic filaments. We report that the structure of DprA consists of the association of a sterile alpha motif domain and a Rossmann fold and that DprA forms tail-to-tail dimers. The isolation of DprA self-interaction mutants revealed that dimerization is crucial for the formation of nucleocomplexes in vitro and for genetic transformation. Residues important for DprA-RecA interaction also were identified and mutated, establishing this interaction as equally important for transformation. Positioning of key interaction residues on the DprA structure revealed an overlap of DprA-DprA and DprA-RecA interaction surfaces. We propose a model in which RecA interaction promotes rearrangement or disruption of the DprA dimer, enabling the subsequent nucleation of RecA and its polymerization onto ssDNA.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Recombinases Rec A/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/fisiologia , Proteínas de Bactérias/química , Western Blotting , Cristalização , DNA/metabolismo , Primers do DNA/genética , Dimerização , Proteínas de Membrana/química , Mutagênese Sítio-Dirigida , Transformação Bacteriana/genética , Técnicas do Sistema de Duplo-Híbrido
8.
PLoS Genet ; 6(12): e1001238, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21170359

RESUMO

We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter) deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter) acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Ligação Proteica , Estrutura Terciária de Proteína
9.
PLoS Genet ; 6(10): e1001166, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20975945

RESUMO

Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Cromossomos de Archaea/genética , DNA Nucleotidiltransferases/genética , Sequência de Aminoácidos , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Sítios de Ligação/genética , Clonagem Molecular , DNA Nucleotidiltransferases/classificação , DNA Nucleotidiltransferases/metabolismo , Replicação do DNA , DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Ligação Proteica , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , Recombinação Genética , Homologia de Sequência de Aminoácidos
10.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 177-187, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762863

RESUMO

During the initiation step of bacterial genome replication, replicative helicases depend on specialized proteins for their loading onto oriC. DnaC and DnaI were the first loaders to be characterized. However, most bacteria do not contain any of these genes, which are domesticated phage elements that have replaced the ancestral and unrelated loader gene dciA several times during evolution. To understand how DciA assists the loading of DnaB, the crystal structure of the complex from Vibrio cholerae was determined, in which two VcDciA molecules interact with a dimer of VcDnaB without changing its canonical structure. The data showed that the VcDciA binding site on VcDnaB is the conserved module formed by the linker helix LH of one monomer and the determinant helix DH of the second monomer. Interestingly, DnaC from Escherichia coli also targets this module onto EcDnaB. Thanks to their common target site, it was shown that VcDciA and EcDnaC could be functionally interchanged in vitro despite sharing no structural similarity. This represents a milestone in understanding the mechanism employed by phage helicase loaders to hijack bacterial replicative helicases during evolution.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/química , Replicação do DNA , DnaB Helicases/química , DnaB Helicases/genética , DnaB Helicases/metabolismo , DNA Helicases/química , Bactérias/metabolismo , Escherichia coli/genética , Sítios de Ligação , Proteínas de Bactérias/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-22684059

RESUMO

The Escherichia coli chromosome is organized into four macrodomains which are found in the replication-origin region (Ori), at the terminus (Ter) and on both its sides (Right and Left). The localization of the macrodomains is subject to programmed changes during the cell cycle. The compaction of the 800 kb Ter macrodomain relies on the binding of the MatP protein to a 13 bp matS motif repeated 23 times. MatP is a small DNA-binding protein of about 18 kDa that shares homology in its C-terminal region with the ribbon-helix-helix (RHH) motifs present in regulatory DNA-binding proteins such as CopG. In order to understand the DNA-compaction mechanism of MatP at an atomic level, it was decided to study the structure of apo MatP and of the nucleoprotein complex MatP-matS by both X-ray diffraction and SAXS analysis. It was demonstrated that MatP forms dimers that bind a single matS motif. Complete native X-ray data sets were collected and phasing of the diffraction data is under way.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Cromossômicas não Histona/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
FEBS Lett ; 596(16): 2031-2040, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568982

RESUMO

To enable chromosomal replication, DNA is unwound by the ATPase molecular motor replicative helicase. The bacterial helicase DnaB is a ring-shaped homo-hexamer whose conformational dynamics are being studied through its different 3D structural states adopted along its functional cycle. Our findings describe a new crystal structure for the apo-DnaB from Vibrio cholerae, forming a planar hexamer with pseudo-symmetry, constituted by a trimer of dimers in which the C-terminal domains delimit a triskelion-shaped hole. This hexamer is labile and inactive. We suggest that it represents an intermediate state allowing the formation of the active NTP-bound hexamer from dimers.


Assuntos
Vibrio cholerae , Proteínas de Bactérias , DNA Helicases , Replicação do DNA , DnaB Helicases , Escherichia coli , Multimerização Proteica
13.
Nat Commun ; 13(1): 1961, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414142

RESUMO

The ComFC protein is essential for natural transformation, a process that plays a major role in the spread of antibiotic resistance genes and virulence factors across bacteria. However, its role remains largely unknown. Here, we show that Helicobacter pylori ComFC is involved in DNA transport through the cell membrane, and is required for the handling of the single-stranded DNA once it is delivered into the cytoplasm. The crystal structure of ComFC includes a zinc-finger motif and a putative phosphoribosyl transferase domain, both necessary for the protein's in vivo activity. Furthermore, we show that ComFC is a membrane-associated protein with affinity for single-stranded DNA. Our results suggest that ComFC provides the link between the transport of the transforming DNA into the cytoplasm and its handling by the recombination machinery.


Assuntos
DNA de Cadeia Simples , Helicobacter pylori , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Membrana/metabolismo , Transformação Bacteriana
14.
J Biol Chem ; 285(41): 31304-12, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20663878

RESUMO

Hsp90 (heat shock protein 90) is an ATP-dependent molecular chaperone regulated by collaborating proteins called cochaperones. This machinery is involved in the conformational activation of client proteins like signaling kinases, transcription factors, or ribonucleoproteins (RNP) such as telomerase. TPR (TetratricoPeptide Repeat)-containing protein associated with Hsp90 (Tah1) and protein interacting with Hsp90 (Pih1) have been identified in Saccharomyces cerevisiae as two Hsp90 cochaperones involved in chromatin remodeling complexes and small nucleolar RNP maturation. Tah1 possesses a minimal TPR domain and binds specifically to the Hsp90 C terminus, whereas Pih1 displays no homology to other protein motifs and has been involved in core RNP protein interaction. While Pih1 alone was unstable and was degraded from its N terminus, we showed that Pih1 and Tah1 form a stable heterodimeric complex that regulates Hsp90 ATPase activity. We used different biophysical approaches such as analytical ultracentrifugation, microcalorimetry, and noncovalent mass spectrometry to characterize the Pih1-Tah1 complex and its interaction with Hsp90. We showed that the Pih1-Tah1 heterodimer binds to Hsp90 with a similar affinity and the same stoichiometry as Tah1 alone. However, the Pih1-Tah1 complex antagonizes Tah1 activity on Hsp90 and inhibits the chaperone ATPase activity. We further identified the region within Pih1 responsible for interaction with Tah1 and inhibition of Hsp90, allowing us to suggest an interaction model for the Pih1-Tah1/Hsp90 complex. These results, together with previous reports, suggest a role for the Pih1-Tah1 cochaperone complex in the recruitment of client proteins such as core RNP proteins to Hsp90.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP90/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Nucleic Acids Res ; 37(1): 129-43, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19033360

RESUMO

The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.


Assuntos
Proteínas de Transporte/química , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U2/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fosfotreonina/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/química
16.
Structure ; 16(3): 360-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334211

RESUMO

DNA topoisomerases resolve DNA topological problems created during transcription, replication, and recombination. These ubiquitous enzymes are essential for cell viability and are highly potent targets for the development of antibacterial and antitumoral drugs. Type II enzymes catalyze the transfer of a DNA duplex through another one in an ATP-dependent mechanism. Because of its small size and sensitivity to antitumoral drugs, the archaeal DNA topoisomerase VI, a type II enzyme, is an excellent model for gaining further understanding of the organization and mechanism of these enzymes. We present the crystal structure of intact DNA topoisomerase VI bound to radicicol, an inhibitor of human topo II, and compare it to the conformation of the apo-protein as determined by small-angle X-ray scattering in solution. This structure, combined with a wealth of experimental data gathered on these enzymes, allows us to propose a structural model for the two-gate DNA transfer mechanism.


Assuntos
DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Catálise , Cristalografia por Raios X , DNA Topoisomerase IV/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Sulfolobus/enzimologia
17.
Front Microbiol ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625182

RESUMO

Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.

18.
Nucleic Acids Res ; 35(18): 6042-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17766251

RESUMO

The Kae1 (Kinase-associated endopeptidase 1) protein is a member of the recently identified transcription complex EKC and telomeres maintenance complex KEOPS in yeast. Kae1 homologues are encoded by all sequenced genomes in the three domains of life. Although annotated as putative endopeptidases, the actual functions of these universal proteins are unknown. Here we show that the purified Kae1 protein (Pa-Kae1) from Pyrococcus abyssi is an iron-protein with a novel type of ATP-binding site. Surprisingly, this protein did not exhibit endopeptidase activity in vitro but binds cooperatively to single and double-stranded DNA and induces unusual DNA conformational change. Furthermore, Pa-Kae1 exhibits a class I apurinic (AP)-endonuclease activity (AP-lyase). Both DNA binding and AP-endonuclease activity are inhibited by ATP. Kae1 is thus a novel and atypical universal DNA interacting protein whose importance could rival those of RecA (RadA/Rad51) in the maintenance of genome integrity in all living cells.


Assuntos
Proteínas Arqueais/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação ao Ferro/química , Pyrococcus abyssi/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/classificação , Proteínas Arqueais/metabolismo , DNA/ultraestrutura , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/classificação , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao Ferro/classificação , Proteínas de Ligação ao Ferro/metabolismo , Metaloendopeptidases/classificação , Modelos Moleculares , Filogenia
19.
FEBS J ; 286(10): 1941-1958, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771270

RESUMO

DNA-processing protein A, a ubiquitous multidomain DNA-binding protein, plays a crucial role during natural transformation in bacteria. Here, we carried out the structural analysis of DprA from the human pathogen Helicobacter pylori by combining data issued from the 1.8-Å resolution X-ray structure of the Pfam02481 domain dimer (RF), the NMR structure of the carboxy terminal domain (CTD), and the low-resolution structure of the full-length DprA dimer obtained in solution by SAXS. In particular, we sought a molecular function for the CTD, a domain that we show here is essential for transformation in H. pylori. Albeit its structural homology to winged helix DNA-binding motifs, we confirmed that the isolated CTD does not interact with ssDNA nor with dsDNA. The key R52 and K137 residues of RF are crucial for these two interactions. Search for sequences harboring homology to either HpDprA or Rhodopseudomonas palustris DprA CTDs led to the identification of conserved patches in the two CTD. Our structural study revealed the similarity of the structures adopted by these residues in RpDprA CTD and HpDprA CTD. This argues for a conserved, but yet to be defined, CTD function, distinct from DNA binding.


Assuntos
Proteínas de Bactérias/química , DNA/metabolismo , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA/química , Helicobacter pylori/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice
20.
J Mol Biol ; 371(5): 1338-53, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17612558

RESUMO

Naf1 is an essential protein involved in the maturation of box H/ACA ribonucleoproteins, a group of particles required for ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis. Naf1 participates in the assembly of the RNP at transcription sites and in the nuclear trafficking of the complex. The crystal structure of a domain of yeast Naf1p, Naf1Delta1p, reveals a striking structural homology with the core domain of archaeal Gar1, an essential protein component of the mature RNP; it suggests that Naf1p and Gar1p have a common binding site on the enzymatic protein component of the particle, Cbf5p. We propose that Naf1p is a competitive binder for Cbf5p, which is replaced by Gar1p during maturation of the H/ACA particle. The exchange of Naf1p by Gar1p might be prompted by external factors that alter the oligomerisation state of Naf1p and Gar1p. The structural homology with Gar1 suggests that the function of Naf1 involves preventing non-cognate RNAs from being loaded during transport of the particle by inducing a non-productive conformation of Cbf5.


Assuntos
Proteínas Fúngicas/química , Hidroliases/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Dimerização , Proteínas Fúngicas/fisiologia , Hidroliases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína , RNA/química , RNA Nuclear Pequeno/química , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa