Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Glob Chang Biol ; 30(1): e17056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273542

RESUMO

Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade-off between grain (i.e., the level of detail), extent (i.e., the number of study sites), and temporal repetition. Here, we present an applied and realized networked sensor system for integrated biodiversity monitoring in the Nature 4.0 project as a solution to these challenges, which considers plants and animals not only as targets of investigation, but also as parts of the modular sensor network by carrying sensors. Our networked sensor system consists of three main closely interlinked components with a modular structure: sensors, data transmission, and data storage, which are integrated into pipelines for automated biodiversity monitoring. We present our own real-world examples of applications, share our experiences in operating them, and provide our collected open data. Our flexible, low-cost, and open-source solutions can be applied for monitoring individual and multiple terrestrial plants and animals as well as their interactions. Ultimately, our system can also be applied to area-wide ecosystem mapping tasks, thereby providing an exemplary cost-efficient and powerful solution for biodiversity monitoring. Building upon our experiences in the Nature 4.0 project, we identified ten key challenges that need to be addressed to better understand and counteract the ongoing loss of biodiversity using networked sensor systems. To tackle these challenges, interdisciplinary collaboration, additional research, and practical solutions are necessary to enhance the capability and applicability of networked sensor systems for researchers and practitioners, ultimately further helping to ensure the sustainable management of ecosystems and the provision of ecosystem services.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Plantas
2.
Horm Behav ; 164: 105592, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941765

RESUMO

A multitude of animal species undergo prolonged fasting events at regularly occurring life history stages. During such periods of food deprivation, individuals need to suppress their appetite. The satiety signalling gut hormone ghrelin has received much attention in this context in studies looking at mammalian systems. In wild birds, however, knowledge on the ghrelin system and its role during extended fasts is still scarce. In this study, we collected plasma samples for measurements of circulating ghrelin concentrations from adult southern rockhopper penguins (Eudyptes chrysocome chrysocome) during the three to four week-long moult-fast that they repeat annually to replace their feathers. We further sampled chicks before and after feeding bouts and non-moulting adults. Circulating ghrelin levels did not differ significantly between fed and unfed chicks but chicks had significantly lower plasma ghrelin levels compared to adults. Furthermore, penguins in late moult (i.e. individuals at the end of the prolonged fasting bout) had higher ghrelin levels compared to non-moulting adults. Our results show elevated levels of circulating ghrelin during moult and generally lower levels of ghrelin in chicks than in adults regardless of feeding state. Given the scarcity or absence of knowledge on the function of ghrelin in seabirds and in fasting birds in general, our results add greatly to our understanding of the avian ghrelin system.

3.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622257

RESUMO

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Prevalência , DNA de Protozoário , Filogenia , Haemosporida/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
4.
Naturwissenschaften ; 110(4): 38, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480393

RESUMO

Accurate knowledge of a species' diets is fundamental to understand their ecological requirements. Next-generation sequencing technology has become a powerful and non-invasive tool for diet reconstruction through DNA metabarcoding. Here, we applied those methods on faecal samples of Common Woodpigeons Columba palumbus, European Turtle Doves Streptopelia turtur, and Stock Doves C. oenas to investigate their dietary composition. By applying primer pairs targeting both the ITS2 region of plant nuclear DNA and the mitochondrial COI region of metazoan DNA, we provide a complete picture of the food ingested and estimate the dietary overlap between the columbiform species during the breeding season. Animal DNA was present very rarely, and a diverse range of plants from the class Spermatopsida dominated the diet, with Asteraceae, Brassicaceae, Cucurbitaceae, Fabaceae, and Poaceae as the most frequently represented families. Generally, we detected a variability between species but also amongst individual samples. Plant species already known from previous studies, mainly visual analyses, could be confirmed for our individuals sampled in Germany and the Netherlands. Our molecular approach revealed new plant taxa, e.g. plants of the families Malvaceae for Woodpigeons, Lythraceae for Turtle Doves, and Pinaceae for Stock Doves, not found in previous studies using visual analyses. Although most of the plant species observed were of wild origin, the majority of cultivated plants found were present in higher frequencies of occurrence, suggesting that cultivated food items likely constitute an important part of the diet of the studied species. For Turtle Doves, a comparison with previous studies suggested regional differences, and that food items (historically) considered as important part of their diet, such as Fumitory Fumaria sp. and Chickweed Stellaria media, were missing in our samples. This indicates that regional variations as well as historic and current data on diet should be considered to plan tailored seed mixtures, which are currently proposed as an important management measure for conservation of the rapidly declining Turtle Dove.


Assuntos
Animais Selvagens , Columbidae , Animais , DNA , Dieta , Sequenciamento de Nucleotídeos em Larga Escala
5.
Parasitology ; 150(6): 498-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36892015

RESUMO

Haemosporidia (Apicomplexa, Haemosporida) are protozoa that infect vertebrate blood cells and are transmitted by vectors. Among vertebrates, birds possess the greatest diversity of haemosporidia, historically placed in 3 genera: Haemoproteus, Leucocytozoon and Plasmodium, the causative agent of avian malaria. In South America, existing data on haemosporidia are spatially and temporally dispersed, so increased surveillance is needed to improve the determination and diagnosis of these parasites. During the non-breeding season in 2020 and 2021, 60 common terns (Sterna hirundo) were captured and bled as part of ongoing research on the population health of migratory birds on the Argentinian Atlantic coast. Blood samples and blood smears were obtained. Fifty-eight samples were screened for Plasmodium, Haemoproteus and Leucocytozoon, as well as for Babesia parasites by nested polymerase chain reaction and by microscopic examination of smears. Two positive samples for Plasmodium were found. The cytochrome b lineages detected in the present study are found for the first time, and are close to Plasmodium lineages found in other bird orders. The low prevalence (3.6%) of haemoparasites found in this research was similar to those reported for previous studies on seabirds, including Charadriiformes. Our findings provide new information about the distribution and prevalence of haemosporidian parasites from charadriiforms in the southernmost part of South America, which remains understudied.


Assuntos
Doenças das Aves , Charadriiformes , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , América do Sul/epidemiologia , Prevalência , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
6.
Arch Environ Contam Toxicol ; 85(1): 55-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438517

RESUMO

The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 µg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 µg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 µg g-1 dw) and highest in Leach's Storm-petrels (3.6 µg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.


Assuntos
Mercúrio , Animais , Mercúrio/análise , Regiões Antárticas , Monitoramento Ambiental , Aves , Oceano Índico , Plumas/química
7.
Mol Genet Genomics ; 297(1): 183-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921614

RESUMO

Interspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin's prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray's prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray's prion that originated through a colonisation event from St Paul. We show that macgillivrayi's medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray's prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Assuntos
Bico/anatomia & histologia , Aves , Evolução Molecular , Animais , Regiões Antárticas , Oceano Atlântico , Aves/anatomia & histologia , Aves/classificação , Aves/genética , Fluxo Gênico , Variação Genética , Hibridização Genética , Oceano Índico , Ilhas do Oceano Índico , Fenótipo , Filogenia
8.
Naturwissenschaften ; 109(5): 44, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976443

RESUMO

Migration is used by many species as a strategy to deal with a seasonally changing environment. For some species, migration patterns can vary across different or even within the same breeding area. The Common Woodpigeon Columba palumbus, an abundant and widespread Palearctic species, exhibits three migratory strategies (strictly migratory, partially migratory and resident) across its European breeding grounds. Based on ring recoveries and satellite tracking data, we investigated the migration and foraging behaviour of Woodpigeons breeding in Southwestern Europe (Portugal) and Central Europe (Germany). We found that individuals could be classified as residents (Portugal) or partial migrants (Germany), with migrating individuals following the European sector of the East Atlantic flyway, and mainly wintering in France. In addition to general data on migration phenology, we provide evidence for different migration strategies (migration of varying distances or resident behaviour), low wintering site fidelity and the use of multiple wintering sites. Furthermore, tracking data provided information on migratory behaviour in consecutive years, clearly showing that individuals may switch migratory strategies (resident vs. migrant) between years, i.e. are facultative partial migrants. While individuals from Portugal mainly stayed within a large park ('green urban area') year-round, Woodpigeons from the city of Giessen (Germany) regularly left the urban area to forage on surrounding farmland (with an average distance covered of 5.7 km), particularly from July to September. Overall, our results highlight the behavioural plasticity in Woodpigeons in terms of foraging and migration strategies within and amongst individuals as well as populations.


Assuntos
Migração Animal , Europa (Continente) , França , Alemanha , Estações do Ano
9.
Proc Natl Acad Sci U S A ; 116(52): 26690-26696, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843914

RESUMO

Climate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera (Eudyptes, Pygoscelis, and Aptenodytes). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues.

10.
Ecol Appl ; 31(8): e02426, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309955

RESUMO

Static (fixed-boundary) protected areas are key ocean conservation strategies, and marine higher predator distribution data can play a leading role toward identifying areas for conservation action. The Falkland Islands are a globally significant site for colonial breeding marine higher predators (i.e., seabirds and pinnipeds). However, overlap between marine predators and Falkland Islands proposed Marine Managed Areas (MMAs) has not been quantified. Hence, to provide information required to make informed decisions regarding the implementation of proposed MMAs, our aims were to objectively assess how the proposed MMA network overlaps with contemporary estimates of marine predator distribution. We collated tracking data (1999-2019) and used a combination of kernel density estimation and model-based predictions of spatial usage to quantify overlap between colonial breeding marine predators and proposed Falkland Islands MMAs. We also identified potential IUCN Key Biodiversity Areas (pKBAs) using (1) kernel density based methods originally designed to identify Important Bird and Biodiversity Areas (IBAs) and (2) habitat preference models. The proposed inshore MMA, which extends three nautical miles from the Falkland Islands, overlapped extensively with areas used by colonial breeding marine predators. This reflects breeding colonies being distributed throughout the Falklands archipelago, and use being high adjacent to colonies due to central-place foraging constraints. Up to 45% of pKBAs identified via kernel density estimation were located within the proposed MMAs. In particular, the proposed Jason Islands Group MMA overlapped with pKBAs for three marine predator species, suggesting it is a KBA hot spot. However, tracking data coverage was incomplete, which biased pKBAs identified using kernel density methods, to colonies tracked. Moreover, delineation of pKBA boundaries were sensitive to the choice of smoothing parameter used in kernel density estimation. Delineation based on habitat model predictions for both sampled and unsampled colonies provided less biased estimates, and revealed 72% of the Falkland Islands Conservation Zone was likely a KBA. However, it may not be practical to consider such a large area for fixed-boundary management. In the context of wide-ranging marine predators, emerging approaches such as dynamic ocean management could complement static management frameworks such as MMAs, and provide protection at relevant spatiotemporal scales.


Assuntos
Aves , Caniformia , Conservação dos Recursos Naturais , Ecossistema , Animais , Organismos Aquáticos , Biodiversidade , Ilhas Malvinas
11.
Parasitol Res ; 120(4): 1405-1420, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33521839

RESUMO

Diseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.


Assuntos
Doenças das Aves/epidemiologia , Columbiformes/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/epidemiologia , Migração Animal , Animais , Doenças das Aves/parasitologia , Columbidae/parasitologia , Citocromos b/genética , Variação Genética , Aquecimento Global , Haemosporida/classificação , Haemosporida/crescimento & desenvolvimento , Especificidade de Hospedeiro , Mitocôndrias/genética , Reação em Cadeia da Polimerase Multiplex/veterinária , Filogenia , Plasmodium/genética , Reação em Cadeia da Polimerase/veterinária , Prevalência , Infecções Protozoárias em Animais/parasitologia
12.
Mol Biol Evol ; 36(8): 1671-1685, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028398

RESUMO

Speciation through homoploid hybridization (HHS) is considered extremely rare in animals. This is mainly because the establishment of reproductive isolation as a product of hybridization is uncommon. Additionally, many traits are underpinned by polygeny and/or incomplete dominance, where the hybrid phenotype is an additive blend of parental characteristics. Phenotypically intermediate hybrids are usually at a fitness disadvantage compared with parental species and tend to vanish through backcrossing with parental population(s). It is therefore unknown whether the additive nature of hybrid traits in itself could lead successfully to HHS. Using a multi-marker genetic data set and a meta-analysis of diet and morphology, we investigated a potential case of HHS in the prions (Pachyptila spp.), seabirds distinguished by their bills, prey choice, and timing of breeding. Using approximate Bayesian computation, we show that the medium-billed Salvin's prion (Pachyptila salvini) could be a hybrid between the narrow-billed Antarctic prion (Pachyptila desolata) and broad-billed prion (Pachyptila vittata). Remarkably, P. salvini's intermediate bill width has given it a feeding advantage with respect to the other Pachyptila species, allowing it to consume a broader range of prey, potentially increasing its fitness. Available metadata showed that P. salvini is also intermediate in breeding phenology and, with no overlap in breeding times, it is effectively reproductively isolated from either parental species through allochrony. These results provide evidence for a case of HHS in nature, and show for the first time that additivity of divergent parental traits alone can lead directly to increased hybrid fitness and reproductive isolation.


Assuntos
Bico/anatomia & histologia , Aves/genética , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Aves/anatomia & histologia , Dieta , Comportamento Alimentar
13.
BMC Ecol ; 20(1): 21, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293412

RESUMO

BACKGROUND: While nitrogen and carbon stable isotope values can reflect ecological segregation, prey choice and spatial distribution in seabirds, the interpretation of bulk stable isotope values is frequently hampered by a lack of isotopic baseline data. In this study, we used compound-specific isotope analyses of amino acids (CSIA-AA) to overcome this constraint and to study interspecific differences, seasonal and historical changes in trophic positions of five seabird species, three penguins and two petrels, from a sub-Antarctic seabird community. RESULTS: CSIA-AA allowed comparing trophic positions of seabirds with temperate and polar distributions. Gentoo and Magellanic penguins had the highest trophic positions during the breeding season (3.7 and 3.9), but decreased these (2.9 and 3.3) during the feed-up for moult. Intra-specific differences were also detected in Thin-billed prions, where carbon isotope values clearly separated individuals with polar and temperate distributions, both in the breeding and interbreeding periods. Thin-billed prions that foraged in polar waters had lower trophic positions (3.2) than conspecifics foraging in temperate waters (3.8). We further investigated historical changes by comparing museum samples with samples collected recently. Our pilot study suggests that Rockhopper penguins, Magellanic penguins and Thin-billed prions with temperate non-breeding distributions had retained their trophic levels over a 90-100 year period, while Gentoo penguins and Thin-billed prions with polar non-breeding distributions had decreased trophic levels compared to historical samples. In contrast, Wilson's storm-petrels had slightly increased trophic levels compared to samples taken in 1924-1930. CONCLUSIONS: We applied compound-specific stable isotope analyses across a range of contexts, from intra-specific comparisons between stages of the breeding cycle to inter-specific seabird community analysis that would not have been possible using bulk stable isotope analyses alone due to differences in isotopic baselines.


Assuntos
Spheniscidae , Animais , Regiões Antárticas , Ilhas Malvinas , Projetos Piloto , Estações do Ano
14.
BMC Ecol ; 20(1): 31, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450835

RESUMO

BACKGROUND: The long-tailed duck (Clangula hyemalis) was categorized as ´Vulnerable` by the IUCN after a study revealed a rapid wintering population decline of 65% between 1992-1993 and 2007-2009 in the Baltic Sea. As knowledge about the European long-tailed duck's life cycle and movement ecology is limited, we investigate its year-round spatiotemporal distribution patterns. Specifically, we aimed to identify the wintering grounds, timing of migration and staging of this population via light-level geolocation. RESULTS: Of the 48 female long-tailed ducks tagged on Kolguev Island (western Russian Arctic), 19 were recaptured to obtain data. After breeding and moulting at freshwater lakes, ducks went out to sea around Kolguev Island and to marine waters ranging from the White Sea to Novaya Zemlya Archipelago for 33 ± 10 days. After a rapid autumn migration, 18 of 19 birds spent their winter in the Baltic Sea and one bird in the White Sea, where they stayed for 212 ± 3 days. There, they used areas known to host long-tailed ducks, but areas differed among individuals. After a rapid spring migration in mid-May, the birds spent 23 ± 3 days at sea in coastal areas between the White Sea and Kolguev Island, before returning to their freshwater breeding habitats in June. CONCLUSIONS: The Baltic Sea represents the most important wintering area for female long-tailed ducks from Kolguev Island. Important spring and autumn staging areas include the Barents Sea and the White Sea. Climate change will render these habitats more exposed to human impacts in the form of fisheries, marine traffic and oil exploitation in near future. Threats that now operate in the wintering areas may thus spread to the higher latitude staging areas and further increase the pressure on long-tailed ducks.


Assuntos
Patos , Espécies em Perigo de Extinção , Animais , Regiões Árticas , Cruzamento , Feminino , Ilhas , Federação Russa , Especificidade da Espécie
16.
J Hered ; 110(7): 801-817, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31737899

RESUMO

Rockhopper penguins are delimited as 2 species, the northern rockhopper (Eudyptes moseleyi) and the southern rockhopper (Eudyptes chrysocome), with the latter comprising 2 subspecies, the western rockhopper (Eudyptes chrysocome chrysocome) and the eastern rockhopper (Eudyptes chrysocome filholi). We conducted a phylogeographic study using multilocus data from 114 individuals sampled across 12 colonies from the entire range of the northern/southern rockhopper complex to assess potential population structure, gene flow, and species limits. Bayesian and likelihood methods with nuclear and mitochondrial DNA, including model testing and heuristic approaches, support E. moseleyi and E. chrysocome as distinct species lineages with a divergence time of 0.97 Ma. However, these analyses also indicated the presence of gene flow between these species. Among southern rockhopper subspecies, we found evidence of significant gene flow and heuristic approaches to species delimitation based on the genealogical diversity index failed to delimit them as species. The best-supported population models for the southern rockhoppers were those where E. c. chrysocome and E. c. filholi were combined into a single lineage or 2 lineages with bidirectional gene flow. Additionally, we found that E. c. filholi has the highest effective population size while E. c. chrysocome showed similar effective population size to that of the endangered E. moseleyi. We suggest that the current taxonomic definitions within rockhopper penguins be upheld and that E. chrysocome populations, all found south of the subtropical front, should be treated as a single taxon with distinct management units for E. c. chrysocome and E. c. filholi.


Assuntos
Genética Populacional , Filogenia , Filogeografia , Spheniscidae/classificação , Spheniscidae/genética , Animais , Densidade Demográfica
17.
J Environ Manage ; 251: 109511, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539703

RESUMO

Marine habitats are nowadays strongly affected by human activities, while for many species the consequences of these impacts are still unclear. The red-throated diver (Gavia stellata) has been reported to be sensitive to ship traffic and other anthropogenic pressures and is consequently of high conservation concern. We studied red-throated divers in the German Bight (North Sea) using satellite telemetry and digital aerial surveys with the aim of assessing effects of ship traffic on the distribution and movements of this species during the non-breeding season. Data from the automatic identification system of ships (AIS) were intersected with bird data and allowed detailed spatial and temporal analyses. During the study period, ship traffic was present throughout the main distribution area of divers. Depending on impact radius, only small areas existed in which ship traffic was present on less than 20% of the days. Ship traffic was dominated by fishing vessels and cargo ships, but also wind farm-related ships were frequently recorded. Red-throated divers were more abundant in areas with no or little concurrent ship traffic. Analysis of aerial survey data revealed strong effects of ship speed on divers: in areas with vessels sailing at high speed only a slow resettlement of the area was observed after the disturbance, while in areas with vessels sailing at medium speed the resettlement was more rapid during the observed time period of 7 hours. Data from satellite-tracking of divers suggest that large relocation distances of individuals are related to disturbance by ships which often trigger birds to take flight. Effective measures to reduce disturbance could include channeled traffic in sensitive areas, as well as speed limits for ships traveling within the protected marine area.


Assuntos
Ecossistema , Navios , Animais , Aves , Movimento , Mar do Norte
18.
Artigo em Inglês | MEDLINE | ID: mdl-29953949

RESUMO

Wilson's storm-petrels (Oceanites oceanicus) are the smallest marine birds breeding in Antarctica, where events like snowstorms often prevent parents from providing food daily for their offspring. To minimize energy expenses, Wilson's storm-petrel chicks can reduce their metabolism and body temperature by entering hypothermia. Hypothermia is reported to impact development, hence we hypothesized that hypothermia will be majorly used after long fasting periods. Chick development in a breeding colony of Wilson's storm-petrels on the South Shetland Islands was monitored daily during three consecutive summers by recording chicks' body mass and temperature, as well as environmental parameters. Provisioning, and body conditions were highest in 2017, and chicks became hypothermic most frequently in 2016. Body temperature was influenced by age, mass, body condition, and minimal nocturnal temperatures. While most chicks were able to maintain stable body temperatures when not fed for one day, some chicks' body temperatures decreased by up to 21 °C. Age did not differ between those two groups, but chicks maintaining their active body temperatures had higher body conditions. Snowstorms were typically followed by several days of unreliable food provisioning and continuous days of fasting. Most chicks were hypothermic during this time, and were hence able to survive periods of food shortages, reverse their low body temperatures after the next feeding event, and regain body mass. We conclude that hypothermia is a strong survival strategy to endure times of fasting, which might be necessary for Antarctic storm-petrel chicks to reach adulthood. However, in future scenarios, which may include more frequent snowstorms due to climate change, malnourishment could lead to more frequent use of hypothermia, which could affect chicks' development.


Assuntos
Aves/fisiologia , Temperatura Baixa , Comportamento Alimentar , Hipotermia/fisiopatologia , Neve , Animais , Regiões Antárticas , Aves/crescimento & desenvolvimento , Temperatura Corporal , Peso Corporal
19.
BMC Evol Biol ; 17(1): 160, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679381

RESUMO

BACKGROUND: In seabirds, the extent of population genetic and phylogeographic structure varies extensively among species. Genetic structure is lacking in some species, but present in others despite the absence of obvious physical barriers (landmarks), suggesting that other mechanisms restrict gene flow. It has been proposed that the extent of genetic structure in seabirds is best explained by relative overlap in non-breeding distributions of birds from different populations. We used results from the analysis of microsatellite DNA variation and geolocation (tracking) data to test this hypothesis. We studied three small (130-200 g), very abundant, zooplanktivorous petrels (Procellariiformes, Aves), each sampled at two breeding populations that were widely separated (Atlantic and Indian Ocean sectors of the Southern Ocean) but differed in the degree of overlap in non-breeding distributions; the wintering areas of the two Antarctic prion (Pachyptila desolata) populations are separated by over 5000 km, whereas those of the blue petrels (Halobaena caerulea) and thin-billed prions (P. belcheri) show considerable overlap. Therefore, we expected the breeding populations of blue petrels and thin-billed prions to show high connectivity despite their geographical distance, and those of Antarctic prions to be genetically differentiated. RESULTS: Microsatellite (at 18 loci) and cytochrome b sequence data suggested a lack of genetic structure in all three species. We thus found no relationship between genetic and spatial structure (relative overlap in non-breeding distributions) in these pelagic seabirds. CONCLUSIONS: In line with other Southern Ocean taxa, geographic distance did not lead to genetic differences between widely spaced populations of Southern Ocean petrel species.


Assuntos
Aves/genética , Filogeografia , Animais , Aves/classificação , Aves/fisiologia , Cruzamento , Fluxo Gênico , Variação Genética , Oceano Índico , Repetições de Microssatélites , Estações do Ano
20.
Mol Ecol ; 26(9): 2426-2429, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391643

RESUMO

A negative relationship between body mass and molecular evolution rates has been suggested, and recently a correlation equation has been published based on mitochondrial genomic data of 475 bird species and their body masses. Here, we re-analysed these data and show that the bird order as a proxy of monophyletic groups was a stronger predictor of the molecular rate than the body mass. We provide order-specific molecular substitution rates. Only three orders (Galliformes, Gruiformes, Pelecaniformes) showed a very clear negative correlation, and specific correlation equations are given for these. The molecular rates of bird orders differed strongly at similar mean body masses, and we suggest that the previously described trend across all birds may arise as smaller species also tend to have characteristic life histories, namely faster turnover of generations, higher fecundity and shorter lifespans.


Assuntos
Aves/classificação , Tamanho Corporal , DNA Mitocondrial/genética , Evolução Molecular , Animais , Genoma Mitocondrial , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa