RESUMO
The planktonic dinoflagellate Prorocentrum compressum is widespread in warm and temperate seas. A strain identified as P. cf. compressum BEA 0681B isolated from the island of Gran Canaria, NE Atlantic Ocean, showed a divergence in rDNA/ITS phylogenies with respect to P. compressum. The Canarian strain was oval, with an average length-to-width ratio of 1.35, smooth thecal surface with less than 150 thecal pores, including oblique pores, sometimes with a bifurcated opening. In contrast, P. compressum was rounder, with a length-to-width ratio < 1.2, with reticulate-foveate ornamentation and 200-300 pores per valve. We propose Prorocentrum canariense sp. nov. These species clustered as the most early-branching lineage in the clade Prorocentrum sensu stricto. Although this clade mainly contains planktonic species, the closer relatives were the benthic species P. tsawwassenense and P. elegans. Interestingly, P. compressum and P. canariense sp. nov. are widely distributed in temperate and warm seas without an apparent morphological adaptation to planktonic life. The formation of two concentric hyaline mucilaginous walls could contribute to this success. We discuss the use of Prorocentrum bidens to solve the nomenclature issue of P. compressum that was described citing a diatom as basionym.
Assuntos
DNA de Protozoário , DNA Ribossômico , Dinoflagellida , Filogenia , Dinoflagellida/classificação , Dinoflagellida/genética , DNA Ribossômico/genética , DNA de Protozoário/genética , Oceano Atlântico , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/análise , Dados de Sequência MolecularRESUMO
Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 µM) and Hepa-1c1c7 (0.91 ± 0.08 µM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight.
Assuntos
Catepsina B , Nostoc , Animais , Camundongos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Estrutura MolecularRESUMO
Phycobiliproteins (PBPs) are proteins of cyanobacteria and some algae such as rhodophytes. They have antimicrobial, antiviral, antitumor, antioxidative, and anti-inflammatory activity at the human level, but there is a lack of knowledge on their antifungal activity against plant pathogens. We studied the activity of PBPs extracted from Arthrospiraplatensis and Hydropuntiacornea against Botrytiscinerea, one of the most important worldwide plant-pathogenic fungi. PBPs were characterized by using FT-IR and FT-Raman in order to investigate their structures. Their spectra differed in the relative composition in the amide bands, which were particularly strong in A. platensis. PBP activity was tested on tomato fruits against gray mold disease, fungal growth, and spore germination at different concentrations (0.3, 0.6, 1.2, 2.4, and 4.8 mg/mL). Both PBPs reduced fruit gray mold disease. A linear dose-response relationship was observed for both PBPs against disease incidence and H. cornea against disease severity. Pathogen mycelial growth and spore germination were reduced significantly by both PBPs. In conclusion, PBPs have the potential for being also considered as natural compounds for the control of fungal plant pathogens in sustainable agriculture.
Assuntos
Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Ficobiliproteínas/farmacologia , Rodófitas/metabolismo , Solanum lycopersicum/microbiologia , Spirulina/metabolismo , Botrytis/crescimento & desenvolvimento , Frutas/microbiologia , Fungicidas Industriais/isolamento & purificação , Estrutura Molecular , Ficobiliproteínas/isolamento & purificação , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Relação Estrutura-AtividadeRESUMO
Water extracts and polysaccharides from Anabaena sp., Ecklonia sp., and Jania sp. were tested for their activity against the fungal plant pathogen Botrytis cinerea. Water extracts at 2.5, 5.0, and 10.0 mg/mL inhibited B. cinerea growth in vitro. Antifungal activity of polysaccharides obtained by N-cetylpyridinium bromide precipitation in water extracts was evaluated in vitro and in vitro at 0.5, 2.0, and 3.5 mg/mL. These concentrations were tested against fungal colony growth, spore germination, colony forming units (CFUs), CFU growth, and on strawberry fruits against B. cinerea infection with pre- and post-harvest application. In in vitro experiments, polysaccharides from Anabaena sp. and from Ecklonia sp. inhibited B. cinerea colony growth, CFUs, and CFU growth, while those extracted from Jania sp. reduced only the pathogen spore germination. In in vitro experiments, all concentrations of polysaccharides from Anabaena sp., Ecklonia sp., and Jania sp. reduced both the strawberry fruits infected area and the pathogen sporulation in the pre-harvest treatment, suggesting that they might be good candidates as preventive products in crop protection.
Assuntos
Anabaena/química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Fragaria/efeitos dos fármacos , Fragaria/microbiologia , Phaeophyceae/química , Rodófitas/química , Antifúngicos/isolamento & purificação , Botrytis/fisiologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Água/químicaRESUMO
Cybastacines A (1) and B (2) were discovered as a novel pentacyclic sesterterpenoid-alkaloid skeleton structure, with a guanidinium group. These molecules were isolated from a Nostoc sp. cyanobacterium collected in the Canary Islands. Their structures were elucidated primarily by a combination of spectroscopic analyses and X-ray diffraction. These compounds showed antibiotic activities against several clinically relevant bacterial strains.
Assuntos
Antibacterianos/química , Nostoc/química , Sesterterpenos/química , Guanidina/química , EspanhaRESUMO
PREMISE OF THE STUDY: To enhance our knowledge of the diversity of microalgae, a phycological survey of the Canary Islands (Spain) was undertaken. Here we report the discovery of a (semi)terrestrial green filamentous alga isolated from a steep volcanic canyon on La Palma. This alga is continually exposed to changing weather conditions (floods vs. droughts) and thus provides a good opportunity to investigate possible adaptations to a semiterrestrial habitat with large fluctuations of environmental parameters. METHODS: We used axenic cultures, simulated flood and drought stresses and studied their effect on the life history of the alga using light, confocal laser scanning and scanning electron microscopy including fluorescent staining. Furthermore, phylogenetic analyses using rDNA sequence comparisons were performed. KEY RESULTS: Three specific life-history traits that likely represent adaptations to the fluctuating environment of the canyon were observed: (1) fragmentation through "filament splitting", a unique branching mechanism not reported before in algae and initiated by formation of oblique cross walls, (2) aplanospore formation, and (3) reproduction by multiflagellate zoospores with 4-24 flagella arranged in groups of four. Phylogenetic analyses identified the alga as Barranca multiflagellata gen. et sp. nov. (Barrancaceae fam. nov., Chaetophorales, Chlorophyceae). Moreover, the Chaetophoraceae Greville, 1824 was emended and a new family, Uronemataceae (fam. nov.) erected. CONCLUSIONS: The discovery of Barrancaceae fam. nov. highlights the importance of investigating nonconventional habitats to explore microalgal diversity. The reproductive versatility demonstrated by Barranca suggests adaptation to a semiterrestrial habitat with large fluctuations in water availability.
Assuntos
Clorófitas/classificação , Clorófitas/fisiologia , Microalgas/classificação , Microalgas/fisiologia , Clorófitas/genética , DNA de Algas/genética , Ecossistema , Microalgas/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , EspanhaRESUMO
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Assuntos
Luz , Microalgas , Impressão Tridimensional , Microalgas/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo , Materiais Biocompatíveis/química , Química Verde/métodos , TintaRESUMO
Centrate is a low-cost alternative to synthetic fertilizers for microalgal cultivation, reducing environmental burdens and remediation costs. Adapted microalgae need to be selected and characterised to maximise biomass production and depuration efficiency. Here, the performance and composition of six microalgal communities cultivated both on synthetic media and centrate within semi-open tubular photobioreactors were investigated through Illumina sequencing. Biomass grown on centrate, exposed to a high concentration of ammonium, showed a higher quantity of nitrogen (5.6% dry weight) than the biomass grown on the synthetic media nitrate (3.9% dry weight). Eukaryotic inocula were replaced by other microalgae while cyanobacterial inocula were maintained. Communities were generally similar for the same inoculum between media, however, inoculation with cyanobacteria led to variability within the eukaryotic community. Where communities differed, centrate resulted in a higher richness and diversity. The higher nitrogen of centrate possibly led to higher abundance of genes coding for N metabolism enzymes.
Assuntos
Compostos de Amônio , Cianobactérias , Microalgas , Compostos de Amônio/metabolismo , Biomassa , Fertilizantes , Microalgas/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotobiorreatores/microbiologia , Crescimento Sustentável , Águas ResiduáriasRESUMO
Activity-guided fractionations from the freshwater cyanobacterium Nodularia harveyana led to the isolation of two monogalactosyldiacylglycerols (MGDG), two digalactosyldiacylglycerols (DGDG), two monoglucosyldiacylglycerols (MGlcDG) and 1-(O-hexose)-3,25-hexacosanediol (HG). Structures were elucidated by a combination of 1D and 2D NMR analysis, HRMS and GC-MS. The potential for inhibition against TNF-α and NF-κB production of these seven compounds was tested in THP-1 cells. All compounds showed activity, but compound 7 showed higher inhibitory activity of TNF-α and NF-κB, with IC50 of 4.88 ± 0.13 and 3.64 ± 0.45 µM, respectively.
Assuntos
Anti-Inflamatórios , Cianobactérias , Glicolipídeos/farmacologia , Nodularia , Anti-Inflamatórios/farmacologia , Cianobactérias/química , Humanos , NF-kappa B , Nodularia/química , Células THP-1RESUMO
Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV-visible spectrophotometry and Raman spectrometry. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved.
RESUMO
Three carbamidocyclophanes, A, F and V, and carbamidocylindrofridin A were isolated from the cultured freshwater cyanobacterium Cylindrospermum stagnale, collected in the Canary Islands. The chemical structures of these compounds were elucidated through NMR, HRMS and ECD spectroscopy. The absolute configuration of carbamidocyclophane A was confirmed using X-ray-diffraction. All compounds showed apoptotic capacity against the SK-MEL-1, SK-MEL-28 and SK-MEL-31 tumour cells. Carbamidocylindrofridin A had the highest anti-tumour potential, with an IC50 of 1 ± 0.3 µM in the SK-MEL-1 cell line.
Assuntos
Cianobactérias , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , EspanhaRESUMO
Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.