Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolites ; 13(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623851

RESUMO

Pteropodine (PT) is a component of some plants with potentially useful pharmacological activities for humans. This compound has biomedical properties related to the modulation of the immune system, nervous system, and inflammatory processes. This study addresses the anti-inflammatory and antioxidant capacity of pteropodin in a murine model of arthritis and induced edema of the mouse ear. To evaluate the anti-inflammatory activity, we used the reversed passive Arthus reaction (RPAR), which includes the rat paw edema test, the rat pleurisy test, and a mouse ear edema model. The antioxidant effect of PT was evaluated by determining the myeloperoxidase enzyme activity. PT showed an anti-inflammatory effect in the different specific and non-specific tests. We found a 51, 66 and 70% inhibitory effect of 10, 20 and 40 mg/kg of PT, respectively, in the rat paw edema test. In the pleurisy assay, 40 mg/kg of PT induced a low neutrophil count (up to 36%) when compared to the negative control group, and 20 mg/kg of PT increased the content of lymphocytes by up to 28% and the pleural exudate volume decreased by 52% when compared to the negative control group, respectively. We also found an 81.4% inflammatory inhibition of the edema ear with 0.04 mg/ear of PT, and a significant myeloperoxidase enzyme inhibition by the three doses of PT tested. We conclude that PT exerted a potent anti-inflammatory effect in the acute inflammation model in rodents.

2.
Injury ; 46(4): 634-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616676

RESUMO

INTRODUCTION: Disturbances in spinal subarachnoid space (SSAS) patency after SCI have been reported as an incidental finding, but there is a lack of information on its in vivo extent and time course. For substances and cells carried in the cerebrospinal fluid (CSF) to reach damaged neural tissue and promote reparative processes, CSF must be able to flow freely in SASS. OBJECTIVE: To characterise the extent and time course of SSAS patency disruption in vivo in a rat model after graded SCI. MATERIALS AND METHODS: Anaesthetised rats were subjected to mild or severe cord contusion at T9. Estimation of SSAS patency was carried out at 1h and 1, 3, 7, 15, 30 and 90 days postinjury, as well as in naïve rats, by quantifying the passage of superparamagnetic beads injected into the CSF at the cisterna magna and recovered at spinal level L2. CSF volume recovery was measured simultaneously. Data were analysed by the two-way ANOVA test. RESULTS: Estimation of SSAS patency revealed nearly complete blockage early after contusion that was unevenly restored entering the chronic stages. Volume of CSF recovered was also significantly decreased early after injury compared to naïve rats, but was fully restored by 1 month postinjury. Overall, although modestly different from each other, changes in both parameters were more pronounced after severe rather than mild injuries for each time point examined. CONCLUSIONS: SCI alters SSAS patency. Its extent is a function primarily of time elapsed after lesion and secondly of injury severity. It is reasonable to expect that disturbances in SASS patency might alter CSF dynamics and impair self-reparative mechanisms and intrathecal therapeutics, making SSAS patency blockage a key target for SCI management.


Assuntos
Barreira Hematoneural/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Espaço Subaracnóideo/patologia , Animais , Pressão do Líquido Cefalorraquidiano/fisiologia , Contusões , Modelos Animais de Doenças , Feminino , Ratos , Ratos Long-Evans , Recuperação de Função Fisiológica
3.
J Neurosci Methods ; 219(2): 271-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23958748

RESUMO

BACKGROUND: Human spinal pathological processes have been linked to a loss of spinal subarachnoid space (SSAS) permeability, which has therefore become a target for therapy. Hence, it has become important to measure SSAS patency in rat models of these human disorders. NEW METHOD: The estimation of in vivo rat SSAS patency is described by quantifying passage of streptavidin-covered superparamagnetic beads (SPMB) in cerebrospinal fluid (CSF). Beads are injected into the cisterna magna and recovered at spinal level L2. They are then coated with biotynilated horseradish peroxidase for enzymatically based colorimetric measurement, after removal of bloody CSF to avoid interference with the colorimetric readings. The procedure was tested in intact rats and in rats 24 h after T9 laminectomy. Residual beads in SSAS were viewed by histology. RESULTS: Average bead recovery from intact rats was 6.4% of amount initially administered, in a mean CSF volume of 126 µL; in laminectomized rats, it was 1%, in a mean CSF volume of 39.2 µL. COMPARISON WITH EXISTING METHOD(S): Unlike in vivo imaging techniques, such as myelography (used here to validate our method) and near infrared fluorescence technology for qualitative rat SSAS patency viewing, our SPMB-based method allows for an in vivo quantitative estimation of the permeability of this space. CONCLUSIONS: A novel method has been established to reliably determine SSAS permeability in rats. The method is reproducible and has the required sensitivity to detect an 84.4% reduction in bead recovery, as seen in laminectomized rats compared to intact animals.


Assuntos
Barreira Hematoneural/fisiologia , Permeabilidade Capilar/fisiologia , Microesferas , Neurociências/métodos , Espaço Subaracnóideo/fisiologia , Animais , Proteínas de Bactérias , Feminino , Peroxidase do Rábano Silvestre , Magnetismo , Neurociências/instrumentação , Ratos , Ratos Long-Evans , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa