Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Transplant ; 37(10): e15060, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354124

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most common cause of birth defects worldwide. Valvular defects are a common form of CHDs, and, at this time, treatment options for children with unrepairable valve disease are limited. Issues with anticoagulation, sizing, and lack of growth in valve replacement options can lead to high mortality rates and incidence of reoperations. Partial heart transplantation, or transplantation of fresh valve allografts, has recently been described as a strategy to provide a durable and non-thrombogenic alternative to conventional prostheses and provide growth potential in pediatric patients. METHODS: The United Network for Organ Sharing (UNOS) database was queried to analyze the number of pediatric donor hearts that were not recovered but had viable valves (n = 3565) between January 2010 and September 2021. Recoverable valves were grouped by donor age: infants (age < 1 year), toddlers (age ≥1 and <3 years), and children (age ≥3 and <18 years). Demographic characteristics of donors were analyzed between age groups. RESULTS: Infants, toddlers, and children had a total of 344, 465, and 2756 hearts with recoverable valves, respectively, over the study period, representing an average of 29, 39, and 230 hearts with recoverable valves per year. CONCLUSION: The results of our study identify the minimum donor supply for partial heart transplantation. The actual number is likely higher because it includes hearts not entered in the UNOS database and domino transplants from orthotopic heart transplant recipients. Partial heart transplantation is logistically feasible as there are recoverable valves available for all age groups, fulfilling a clinical need in pediatric patients with unrepairable valve disease.


Assuntos
Transplante de Coração , Transplantes , Lactente , Humanos , Criança , Estados Unidos/epidemiologia , Pré-Escolar , Adolescente , Doadores de Tecidos , Transplante Homólogo , Incidência
2.
Bioengineering (Basel) ; 9(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735507

RESUMO

Surgical simulation is becoming increasingly important in training cardiac surgeons. However, there are currently no training simulators capable of testing the quality of simulated heart valve procedures under dynamic physiologic conditions. Here we describe a dynamic ventricular simulator, consisting of a 3D printed valve suspension chamber and a model 1423 Harvard apparatus pulsatile pump, which can provide close to physiologic hemodynamic perfusion of porcine aortic roots attached to the valve chamber for education and training in cardiac surgery. The simulator was validated by using it to test aortic valve leaflet repairs (n = 6) and aortic valve replacements (n = 3) that were performed by two trainees. Procedural success could be evaluated by direct visualization of the opening and closing valve, hemodynamic measurements and echocardiography. We conclude that, unlike other methods of simulation, this novel ventricular simulator is able to test the functional efficacy of aortic procedures under dynamic physiologic conditions using clinically relevant echocardiographic and hemodynamic outcomes. While validated for valve surgery, other potential applications include ascending aortic interventions, coronary re-implantation or catheter-based valve replacements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa