Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 15(1): 455-467, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33404232

RESUMO

Bone continuously adapts to its mechanical environment by structural reorganization to maintain mechanical strength. As the adaptive capabilities of bone are portrayed in its nano- and microstructure, the existence of dark and bright osteons with contrasting preferential collagen fiber orientation (longitudinal and oblique-angled, respectively) points at a required tissue heterogeneity that contributes to the excellent fracture resistance mechanisms in bone. Dark and bright osteons provide an exceptional opportunity to deepen our understanding of how nanoscale tissue properties influence and guide fracture mechanisms at larger length scales. To this end, a comprehensive structural, compositional, and mechanical assessment is performed using circularly polarized light microscopy, synchrotron nanocomputed tomography, focused ion beam/scanning electron microscopy, quantitative backscattered electron imaging, Fourier transform infrared spectroscopy, and nanoindentation testing. To predict how the mechanical behavior of osteons is affected by shifts in collagen fiber orientation, finite element models are generated. Fundamental disparities between both osteon types are observed: dark osteons are characterized by a higher degree of mineralization along with a higher ratio of inorganic to organic matrix components that lead to higher stiffness and the ability to resist plastic deformation under compression. On the contrary, bright osteons contain a higher fraction of collagen and provide enhanced ductility and energy dissipation due to lower stiffness and hardness.


Assuntos
Colágeno , Ósteon , Fenômenos Biomecânicos , Osso e Ossos , Matriz Extracelular , Resistência à Tração
2.
J Mech Behav Biomed Mater ; 60: 339-355, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26925698

RESUMO

One of the key functions of load-bearing biological materials, such as bone, dentin and sea shell, is to protect their inside fragile organs by effectively damping dynamic impact. How those materials achieve this remarkable function remains largely unknown. Using systematic finite element analyses, we study the stress wave propagation and attenuation in cortical bone at the nanoscale as a model material to examine the effects of protein viscosity, mineral fraction and staggered architecture on the elastic wave decay. It is found that the staggered arrangement, protein viscosity and mineral fraction work cooperatively to effectively attenuate the stress wave. For a typical mineral volume fraction and protein viscosity, an optimal staggered nanostructure with specific feature sizes and layouts is able to give rise to the fastest stress wave decay, and the optimal aspect ratio and thickness of mineral platelets are in excellent agreement with experimental measurements. In contrary, as the mineral volume fraction or the protein viscosity goes much higher, the structural arrangement is seen having trivial effect on the stress wave decay, suggesting that the damping properties of the composites go into the structure-insensitive regime from the structure-sensitive regime. These findings not only significantly add to our understanding of the structure-function relationship of load-bearing biological materials, and but also provide useful guidelines for the design of bio-inspired materials with superior resistance to impact loading.


Assuntos
Osso Cortical/fisiologia , Modelos Biológicos , Proteínas/química , Suporte de Carga , Densidade Óssea , Análise de Elementos Finitos , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa