Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 580(7802): 205-209, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269353

RESUMO

Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2-6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III-V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.

2.
Phys Rev Lett ; 108(12): 126404, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540604

RESUMO

The study of the oxygen vacancy (F center) in MgO has been aggravated by the fact that the positively charged and the neutral vacancy (F+ and F0, respectively) absorb at practically identical energies. Here we apply many-body perturbation theory in the G0W0 approximation and the Bethe-Salpeter approach to calculate the optical absorption and emission spectrum of the oxygen vacancy in all three charge states. We observe unprecedented agreement between the calculated and the experimental optical absorption spectra for the F0 and F+ center. Our calculations reveal that not only the absorption but also the emission spectra of different charge states peak at nearly the same energy, which leads to a reinterpretation of the F center's optical properties.


Assuntos
Óxido de Magnésio/química , Óptica e Fotônica/métodos , Oxigênio/química , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Análise Espectral/métodos
3.
Phys Rev Lett ; 107(23): 236405, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182110

RESUMO

Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e.g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa