Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(45): 31319-29, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246532

RESUMO

Newly synthesized membrane and secreted proteins undergo a series of posttranslational modifications in the Golgi apparatus, including attachment of carbohydrate moieties. The final structure of so-formed glycans is determined by the order of execution of the different glycosylation steps, which seems intimately related to the spatial distribution of glycosyltransferases and glycosyl hydrolases within the Golgi apparatus. How cells achieve an accurate localization of these enzymes is not completely understood but might involve dynamic processes such as coatomer-coated (COPI) vesicle-mediated trafficking. In yeast, this transport is likely to be regulated by vacuolar protein sorting 74 (Vps74p), a peripheral Golgi protein able to interact with COPI coat as well as with a binding motif present in the cytosolic tails of some mannosyltransferases. Recently, Golgi phosphoprotein 3 (GOLPH3), the mammalian homolog of Vps74, has been shown to control the Golgi localization of core 2 N-acetylglucosamine-transferase 1. Here, we highlight a role of GOLPH3 in the spatial localization of α-2,6-sialyltransferase 1. We show, for the first time, that GOLPH3 supports incorporation of both core 2 N-acetylglucosamine-transferase 1 and α-2,6-sialyltransferase 1 into COPI vesicles. Depletion of GOLPH3 altered the subcellular localization of these enzymes. In contrast, galactosyltransferase, an enzyme that does not interact with GOLPH3, was neither incorporated into COPI vesicles nor was dependent on GOLPH3 for proper localization.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/fisiologia , Animais , Antígenos CD/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Proteína Coatomer/metabolismo , Cricetinae , Cricetulus , Citosol/metabolismo , Galactosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Microscopia de Fluorescência , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Interferência de RNA , Proteínas Recombinantes/metabolismo , Sialiltransferases/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(34): 14508-13, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706536

RESUMO

Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Guanilato Ciclase/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo , Animais , Sítios de Ligação , Proteínas Adaptadoras de Sinalização CARD/genética , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Guanilato Ciclase/genética , Humanos , Imunoprecipitação , Células Jurkat , Mutação , NF-kappa B/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Transfecção
3.
Elife ; 62017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621666

RESUMO

COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of ßδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Fator 1 de Ribosilação do ADP/química , Animais , Complexo I de Proteína do Envoltório/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Camundongos , Modelos Moleculares , Conformação Proteica
4.
J Cell Biol ; 194(5): 765-77, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21893600

RESUMO

Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Proteína Coatomer/metabolismo , Fator 1 de Ribosilação do ADP/genética , Substituição de Aminoácidos/fisiologia , Animais , Autoantígenos/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Reagentes de Ligações Cruzadas/metabolismo , Reagentes de Ligações Cruzadas/efeitos da radiação , Microscopia Crioeletrônica , Cisteína/genética , Cisteína/metabolismo , Proteínas do Citoesqueleto , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/patologia , Complexo de Golgi/fisiologia , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/fisiologia , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação/fisiologia , N-Acetil-Lactosamina Sintase/metabolismo , Proteínas Nucleares/metabolismo , Processos Fotoquímicos , Ligação Proteica/fisiologia , Multimerização Proteica/fisiologia , Coelhos , Ratos , Ratos Endogâmicos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Lipossomas Unilamelares/metabolismo , alfa-Manosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa