Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(7): e0230721, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35297727

RESUMO

Cells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have shown previously how a recombinant Saccharomyces cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level. Here, we investigated this adaptation at the single-cell level by application of fluorescence-activated cell sorting (FACS) and showed that the following three apparent phenotypes underlie the adaptive response observed at the bulk level: (i) cells that drastically reduced insulin production (23%), (ii) cells with reduced enzymatic capacity in central carbon metabolism (46%), and (iii) cells that exhibited pseudohyphal growth (31%). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production, and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness toward the glucose-limited conditions. The results highlight the importance of considering population heterogeneity when studying adaptation and evolution. IMPORTANCE The yeast Saccharomyces cerevisiae is an attractive microbial host for industrial production and is used widely for manufacturing, e.g., pharmaceuticals. Chemostat cultivation mode is an efficient cultivation strategy for industrial production processes as it ensures a constant, well-controlled cultivation environment. Nevertheless, both the production of a heterologous product and the constant cultivation environment in the chemostat impose a selective pressure on the production organism, which may result in adaptation and loss of productivity. The exact mechanisms behind the observed adaptation and loss of performance are often unidentified. We used a recombinant S. cerevisiae strain producing heterologous insulin and investigated the adaptation occurring during chemostat growth at the single-cell level. We showed that three apparent phenotypes underlie the adaptive response observed at the bulk level in the chemostat. These findings highlight the importance of considering population heterogeneity when studying adaptation in industrial bioprocesses.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Carbono/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biotechnol Lett ; 34(8): 1465-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22538546

RESUMO

Morphology is important in industrial processes involving filamentous organisms because it affects the mixing and mass transfer and can be linked to productivity. Image analysis provides detailed information about the morphology but, in practice, it is often laborious including both collection of high quality images and image processing. Laser diffraction is rapid and fully automatic and provides a volume-weighted distribution of the particle sizes. However, it is based on a number of assumptions that do not always apply to samples. We have evaluated laser diffraction to measure cell clumps and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size distributions, i.e. unimodal or bimodal distributions. Both techniques produced similar estimations of the population means, whereas the estimates of the standard deviations were generally higher using laser diffraction compared to image analysis. Therefore, laser diffraction measurements are high quality and the technique may be useful when rapid measurements of filamentous cell clumps and pellets are required.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lasers , Espalhamento de Radiação , Streptomyces coelicolor/citologia , Biotecnologia , Fermentação , Tamanho da Partícula , Refratometria , Reprodutibilidade dos Testes , Streptomyces coelicolor/química
3.
J Ind Microbiol Biotechnol ; 38(10): 1679-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21461747

RESUMO

The recent process analytical technology (PAT) initiative has put an increased focus on online sensors to generate process-relevant information in real time. Specifically for fermentation, however, introduction of online sensors is often far from straightforward, and online measurement of biomass is one of the best examples. The purpose of this study was therefore to compare the performance of various online biomass sensors, and secondly to demonstrate their use in early development of a filamentous cultivation process. Eight Streptomyces coelicolor fed-batch cultivations were run as part of process development in which the pH, the feeding strategy, and the medium composition were varied. The cultivations were monitored in situ using multi-wavelength fluorescence (MWF) spectroscopy, scanning dielectric (DE) spectroscopy, and turbidity measurements. In addition, we logged all of the classical cultivation data, such as the carbon dioxide evolution rate (CER) and the concentration of dissolved oxygen. Prediction models for the biomass concentrations were estimated on the basis of the individual sensors and on combinations of the sensors. The results showed that the more advanced sensors based on MWF and scanning DE spectroscopy did not offer any advantages over the simpler sensors based on dual frequency DE spectroscopy, turbidity, and CER measurements for prediction of biomass concentration. By combining CER, DE spectroscopy, and turbidity measurements, the prediction error was reduced to 1.5 g/l, corresponding to 6% of the covered biomass range. Moreover, by using multiple sensors it was possible to check the quality of the individual predictions and switch between the sensors in real time.


Assuntos
Biomassa , Fermentação , Reatores Biológicos , Espectroscopia Dielétrica , Sistemas On-Line , Software , Espectrometria de Fluorescência , Streptomyces coelicolor/metabolismo
4.
Front Bioeng Biotechnol ; 8: 579841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392163

RESUMO

There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.

5.
Biotechnol Prog ; 32(1): 152-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26488769

RESUMO

In the biotechnological industry, economic decisions in investment are typically based on laboratory-scale experiments. Scale-down as a tool is therefore of high industrial importance to transfer the processes into larger production scale without loss in performance. In this study, large-scale prolonged continuous cultivations with a heterologous protein producing Saccharomyces cerevisiae strain have been scaled-down to a two-compartment scale-down reactor system. The effects of glucose, pH, and oxygen concentration gradients have been investigated by comparison with corresponding 300 mL standard continuous cultivations. It was found that substrate gradients within a limited range result in increased productivity of the heterologous protein under regulation of glycolytic TPI promoter and delay the decrease of protein and trehalose production during continuous cultivation. Based on these results, it is argued that introduction of variations in substrate concentration can be beneficial for industrial continuous cultivations.


Assuntos
Reatores Biológicos , Biotecnologia , Técnicas de Cultura de Células/métodos , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Glucose/química , Glicólise , Concentração de Íons de Hidrogênio , Oxigênio/química , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Trealose/biossíntese , Trealose/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa