Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Genomics ; 24(1): 542, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704951

RESUMO

BACKGROUND: Plasmodium falciparum malaria is a leading cause of pediatric morbidity and mortality in holoendemic transmission areas. Severe malarial anemia [SMA, hemoglobin (Hb) < 5.0 g/dL in children] is the most common clinical manifestation of severe malaria in such regions. Although innate immune response genes are known to influence the development of SMA, the role of natural killer (NK) cells in malaria pathogenesis remains largely undefined. As such, we examined the impact of genetic variation in the gene encoding a primary NK cell receptor, natural cytotoxicity-triggering receptor 3 (NCR3), on the occurrence of malaria and SMA episodes over time. METHODS: Susceptibility to malaria, SMA, and all-cause mortality was determined in carriers of NCR3 genetic variants (i.e., rs2736191:C > G and rs11575837:C > T) and their haplotypes. The prospective observational study was conducted over a 36 mos. follow-up period in a cohort of children (n = 1,515, aged 1.9-40 mos.) residing in a holoendemic P. falciparum transmission region, Siaya, Kenya. RESULTS: Poisson regression modeling, controlling for anemia-promoting covariates, revealed a significantly increased risk of malaria in carriers of the homozygous mutant allele genotype (TT) for rs11575837 after multiple test correction [Incidence rate ratio (IRR) = 1.540, 95% CI = 1.114-2.129, P = 0.009]. Increased risk of SMA was observed for rs2736191 in children who inherited the CG genotype (IRR = 1.269, 95% CI = 1.009-1.597, P = 0.041) and in the additive model (presence of 1 or 2 copies) (IRR = 1.198, 95% CI = 1.030-1.393, P = 0.019), but was not significant after multiple test correction. Modeling of the haplotypes revealed that the CC haplotype had a significant additive effect for protection against SMA (i.e., reduced risk for development of SMA) after multiple test correction (IRR = 0.823, 95% CI = 0.711-0.952, P = 0.009). Although increased susceptibility to SMA was present in carriers of the GC haplotype (IRR = 1.276, 95% CI = 1.030-1.581, P = 0.026) with an additive effect (IRR = 1.182, 95% CI = 1.018-1.372, P = 0.029), the results did not remain significant after multiple test correction. None of the NCR3 genotypes or haplotypes were associated with all-cause mortality. CONCLUSIONS: Variation in NCR3 alters susceptibility to malaria and SMA during the acquisition of naturally-acquired malarial immunity. These results highlight the importance of NK cells in the innate immune response to malaria.


Assuntos
Anemia , Malária Falciparum , Malária , Humanos , Criança , Anemia/genética , Genótipo , Malária Falciparum/genética , Alelos , Receptor 3 Desencadeador da Citotoxicidade Natural
2.
BMC Cancer ; 23(1): 566, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340364

RESUMO

BACKGROUND: Epstein Barr virus (EBV)-associated endemic Burkitt's Lymphoma pediatric cancer is associated with morbidity and mortality among children resident in holoendemic Plasmodium falciparum regions in western Kenya. P. falciparum exerts strong selection pressure on sickle cell trait (SCT), alpha thalassemia (-α3.7/αα), glucose-6-phosphate dehydrogenase (G6PD), and merozoite surface protein 2 (MSP-2) variants (FC27, 3D7) that confer reduced malarial disease severity. The current study tested the hypothesis that SCT, (-α3.7/αα), G6PD mutation and (MSP-2) variants (FC27, 3D7) are associated with an early age of EBV acquisition. METHODS: Data on infant EBV infection status (< 6 and ≥ 6-12 months of age) was abstracted from a previous longitudinal study. Archived infant DNA (n = 81) and mothers DNA (n = 70) samples were used for genotyping hemoglobinopathies and MSP-2. The presence of MSP-2 genotypes in maternal DNA samples was used to indicate infant in-utero malarial exposure. Genetic variants were determined by TaqMan assays or standard PCR. Group differences were determined by Chi-square or Fisher's analysis. Bivariate regression modeling was used to determine the relationship between the carriage of genetic variants and EBV acquisition. RESULTS: EBV acquisition for infants < 6 months was not associated with -α3.7/αα (OR = 1.824, P = 0.354), SCT (OR = 0.897, P = 0.881), or G6PD [Viangchan (871G > A)/Chinese (1024 C > T) (OR = 2.614, P = 0.212)] and [Union (1360 C > T)/Kaiping (1388G > A) (OR = 0.321, P = 0.295)]. There was no relationship between EBV acquisition and in-utero exposure to either FC27 (OR = 0.922, P = 0.914) or 3D7 (OR = 0.933, P = 0.921). In addition, EBV acquisition in infants ≥ 6-12 months also showed no association with -α3.7/αα (OR = 0.681, P = 0.442), SCT (OR = 0.513, P = 0.305), G6PD [(Viangchan (871G > A)/Chinese (1024 C > T) (OR = 0.640, P = 0.677)], [Mahidol (487G > A)/Coimbra (592 C > T) (OR = 0.948, P = 0.940)], [(Union (1360 C > T)/Kaiping (1388G > A) (OR = 1.221, P = 0.768)], African A (OR = 0.278, P = 0.257)], or in utero exposure to either FC27 (OR = 0.780, P = 0.662) or 3D7 (OR = 0.549, P = 0.241). CONCLUSION: Although hemoglobinopathies (-α3.7/αα, SCT, and G6PD mutations) and in-utero exposure to MSP-2 were not associated with EBV acquisition in infants 0-12 months, novel G6PD variants were discovered in the population from western Kenya. To establish that the known and novel hemoglobinopathies, and in utero MSP-2 exposure do not confer susceptibility to EBV, future studies with larger sample sizes from multiple sites adopting genome-wide analysis are required.


Assuntos
Infecções por Vírus Epstein-Barr , Hemoglobinopatias , Malária Falciparum , Malária , Criança , Animais , Humanos , Lactente , Herpesvirus Humano 4/genética , Merozoítos , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/genética , Quênia/epidemiologia , Malária/epidemiologia , Malária/genética , Polimorfismo Genético
3.
J Hum Genet ; 65(2): 99-113, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664161

RESUMO

Cyclooxygenase-2 [(COX-2) or prostaglandin endoperoxide H2 synthase-2 (PTGS-2)] induces the production of prostaglandins as part of the host-immune response to infections. Although a number of studies have demonstrated the effects of COX-2 promoter variants on autoimmune and inflammatory diseases, their role in malaria remains undefined. As such, we investigated the relationship between four COX-2 promoter variants (COX-2 -512 C > T, -608 T > C, -765 G > C, and -1195 A > G) and susceptibility to malaria and severe malarial anemia (SMA) upon enrollment and longitudinally over a 36-month follow-up period. All-cause mortality was also explored. The investigation was carried out in children (n = 1081, age; 2-70 months) residing in a holoendemic Plasmodium falciparum transmission region of western Kenya. At enrollment, genotypes/haplotypes (controlling for anemia-promoting covariates) did not reveal any strong effects on susceptibility to either malaria or SMA. Longitudinal analyses showed decreased malaria episodes in children who inherited the -608 CC mutant allele (RR = 0.746, P = 1.811 × 10-4) and -512C/-608T/-765G/-1195G (CTGG) haplotype (RR = 0.856, P = 0.011), and increased risk in TTCA haplotype carriers (RR = 1.115, P = 0.026). Over the follow-up period, inheritance of the rare TTCG haplotype was associated with enhanced susceptibility to both malaria (RR = 1.608, P = 0.016) and SMA (RR = 5.714, P = 0.004), while carriage of the rare TTGG haplotype increased the risk of malaria (RR = 1.755, P = 0.007), SMA (RR = 8.706, P = 3.97 × 10-4), and all-cause mortality (HR = 110.000, P = 0.001). Collectively, these results show that SNP variations in the COX-2 promoter, and their inherited combinations, are associated with the longitudinal risk of malaria, SMA, and all-cause mortality among children living in a high transmission area for P. falciparum.


Assuntos
Anemia/genética , Ciclo-Oxigenase 2/genética , Malária Falciparum/genética , Malária/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Anemia/mortalidade , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Lactente , Quênia , Estudos Longitudinais , Malária/imunologia , Malária/mortalidade , Malária/transmissão , Malária Falciparum/imunologia , Malária Falciparum/mortalidade , Malária Falciparum/transmissão , Masculino , Risco
4.
Malar J ; 19(1): 378, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092587

RESUMO

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is the only anti-malarial drug formulation approved for intermittent preventive treatment in pregnancy (IPTp). However, mutations in the Plasmodium falciparum dhfr (Pfdhfr) and dhps (Pfdhps) genes confer resistance to pyrimethamine and sulfadoxine, respectively. Here, the frequencies of SP resistance-associated mutations from 2005 to 2018 were compared in samples from Kenyan children with malaria residing in a holoendemic transmission region. METHODS: Partial sequences of the Pfdhfr and Pfdhps genes were amplified and sequenced from samples collected in 2005 (n = 81), 2010 (n = 95), 2017 (n = 43), and 2018 (n = 55). The frequency of known mutations conferring resistance to pyrimethamine and sulfadoxine were estimated and compared. Since artemisinin-based combination therapy (ACT) is the current first-line treatment for malaria, the presence of mutations in the propeller domain of P. falciparum kelch13 gene (Pfk13) linked to ACT-delayed parasite clearance was studied in the 2017/18 samples. RESULTS: Among other changes, the point mutation of Pfdhps S436H increased in frequency from undetectable in 2005 to 28% in 2017/18. Triple Pfdhfr mutant allele (CIRNI) increased in frequency from 84% in 2005 to 95% in 2017/18, while the frequency of Pfdhfr double mutant alleles declined (allele CICNI from 29% in 2005 to 6% in 2017/18, and CNRNI from 9% in 2005 to undetectable in 2010 and 2017/18). Thus, a multilocus Pfdhfr/Pfdhps genotype with six mutations (HGEAA/CIRNI), including Pfdhps S436H, increased in frequency from 2010 to 2017/18. Although none of the mutations associated with ACT-delayed parasite clearance was observed, the Pfk13 mutation A578S, the most widespread Pfk13 SNP found in Africa, was detected in low frequency (2.04%). CONCLUSIONS: There were changes in SP resistance mutant allele frequencies, including an increase in the Pfdhps S436H. Although these patterns seem consistent with directional selection due to drug pressure, there is a lack of information to determine the actual cause of such changes. These results suggest incorporating molecular surveillance of Pfdhfr/Pfdhps mutations in the context of SP efficacy studies for intermittent preventive treatment in pregnancy (IPTp).


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Quênia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
BMC Med Genet ; 20(1): 140, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420016

RESUMO

BACKGROUND: Severe malarial anemia (SMA) is a leading cause of malaria-related morbidity and mortality in children. The genetic factors that influence development of SMA and inefficient erythropoiesis, a central pathogenic feature of SMA, are only partially understood. METHODS: We performed a pilot Genome-wide Association Study (GWAS) on children with Plasmodium falciparum. The GWAS was performed using the Illumina® Infinium® HD Super Assay in conjunction with Illumina's® Human Omni2.5-8v1 BeadChip (with > 2.45 M markers). Data were analyzed using single SNP logistic regression analysis with an additive model of inheritance controlling for covariates. Results from our pilot global genomics study identified that variation in interleukin (IL)-7 was associated with enhanced risk of SMA. To validate this finding, we investigated the relationship between genotypes and/or haplotypes of two single nucleotide polymorphisms (SNPs) in IL7 [72194 T/C and - 2440 A/G] and susceptibility to both SMA and inefficient erythropoiesis [i.e., reticulocyte production index (RPI) < 2.0 in anemic children (Hb < 11.0 g/dL). Children presenting with P. falciparum malaria (< 3 years, n = 883) were stratified into two groups: Uncomplicated malaria (UM, n = 718) and SMA (n = 165). RESULTS: Regression modeling, controlling for anemia-related confounders, revealed that carriage of the TC genotype at position 72194 T/C was associated with enhanced susceptibility to inefficient erythropoiesis (OR = 1.90; 95% CI 1.09-3.30; P = 0.02) as was homozygous CC (OR 5.14; 95% CI = 1.20-21.99; P = 0.03). Consistent with this finding, individuals with the CA (72194C/-2440A) haplotype had an increased risk of inefficient erythropoiesis (OR = 1.90; 95% CI = 1.10-3.30; P = 0.02), whereas TA haplotype carriers had marginal protection against inefficient erythropoiesis (OR = 0.24; 95% CI = 0.06-1.21; P = 0.05). These observations were supported by Cochran-Armitage trend test for inefficient erythropoiesis (CA > TA > CG; P < 0.01). Although none of the genotype and/or haplotypic variants were significantly associated with SMA, the direction of the risk profiles were consistent with the erythropoiesis results. CONCLUSION: Taken together, variation in IL7 is associated with erythropoietic responses in children with falciparum malaria, a central physiological feature contributing to development of SMA.


Assuntos
Eritropoese/genética , Variação Genética , Interleucina-7/genética , Malária Falciparum/complicações , Anemia/etiologia , Anemia/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Lactente , Quênia , Masculino , Projetos Piloto , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único
6.
BMC Infect Dis ; 17(1): 291, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427357

RESUMO

BACKGROUND: Improved understanding of the molecular mechanisms involved in pediatric severe malarial anemia (SMA) pathogenesis is a crucial step in the design of novel therapeutics. Identification of host genetic susceptibility factors in immune regulatory genes offers an important tool for deciphering malaria pathogenesis. The IL-23/IL-17 immune pathway is important for both immunity and erythropoiesis via its effects through IL-23 receptors (IL-23R). However, the impact of IL-23R variants on SMA has not been fully elucidated. METHODS: Since variation within the coding region of IL-23R may influence the pathogenesis of SMA, the association between IL-23R rs1884444 (G/T), rs7530511 (C/T), and SMA (Hb < 6.0 g/dL) was examined in children (n = 369, aged 6-36 months) with P. falciparum malaria in a holoendemic P. falciparum transmission area. RESULTS: Logistic regression analysis, controlling for confounding factor of anemia, revealed that individual genotypes of IL-23R rs1884444 (G/T) [GT; OR = 1.34, 95% CI = 0.78-2.31, P = 0.304 and TT; OR = 2.02, 95% CI = 0.53-7.74, P = 0.286] and IL-23R rs7530511 (C/T) [CT; OR = 2.6, 95% CI = 0.59-11.86, P = 0.202 and TT; OR = 1.66, 95% CI = 0.84-3.27, P = 0.142] were not associated with susceptibility to SMA. However, carriage of IL-23R rs1884444T/rs7530511T (TT) haplotype, consisting of both mutant alleles, was associated with increased susceptibility to SMA (OR = 1.12, 95% CI = 1.07-4.19, P = 0.030). CONCLUSION: Results presented here demonstrate that a haplotype of non-synonymous IL-23R variants increase susceptibility to SMA in children of a holoendemic P. falciparum transmission area.


Assuntos
Anemia/genética , Haplótipos , Malária Falciparum/complicações , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina/genética , Anemia/etiologia , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Quênia , Malária Falciparum/transmissão , Masculino , Mutação
7.
BMC Infect Dis ; 17(1): 289, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427365

RESUMO

BACKGROUND: Naturally-acquired immunity to Plasmodium falciparum malaria develops after several episodes of infection. Fc gamma receptors (FcγRs) bind to immunoglobulin G (IgG) antibodies and mediate phagocytosis of opsonized microbes, thereby, linking humoral and cellular immunity. FcγR polymorphisms influence binding affinity to IgGs and consequently, can influence clinical malaria outcomes. Specifically, variations in FcγRIIA -131Arg/His, FcγRIIIA-176F/V and FcγRIIIB-NA1/NA2 modulate immune responses through altered binding preferences to IgGs and immune complexes. Differential binding, in turn, changes ability of immune cells to respond to infection through production of inflammatory mediators during P. falciparum infection. METHODS: We determined the association between haplotypes of FcγRIIA-131Arg/His, FcγRIIIA-176F/V and FcγRIIIB-NA1/NA2 variants and severe malarial anemia (SMA; hemoglobin < 6.0 g/dL, any density parasitemia) in children (n = 274; aged 6-36 months) presenting for their first hospital visit with P. falciparum malaria in a holoendemic transmission region of western Kenya. FcγRIIA-131Arg/His and FcγRIIIA-176F/V genotypes were determined using TaqMan® SNP genotyping, while FcγRIIIBNA1/NA2 genotypes were determined using restriction fragment length polymorphism. Hematological and parasitological indices were measured in all study participants. RESULTS: Carriage of FcγRIIA-131Arg/FcγRIIIA-176F/FcγRIIIBNA2 haplotype was associated with susceptibility to SMA (OR = 1.70; 95% CI; 1.02-2.93; P = 0.036), while the FcγRIIA-131His/ FcγRIIIA-176F/ FcγRIIIB NA1 haplotype was marginally associated with enhanced susceptibility to SMA (OR: 1.80, 95% CI; 0.98-3.30, P = 0.057) and higher levels of parasitemia (P = 0.009). Individual genotypes of FcγRIIA-131Arg/His, FcγRIIIA-176F/V and FcγRIIIB-NA1/NA2 were not associated with susceptibility to SMA. CONCLUSION: The study revealed that haplotypes of FcγRs are important in conditioning susceptibility to SMA in immune-naive children from P. falciparum holoendemic region of western Kenya.


Assuntos
Anemia/genética , Malária/complicações , Polimorfismo Genético , Receptores de IgG/genética , Anemia/etiologia , Pré-Escolar , Estudos Transversais , Feminino , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Lactente , Quênia , Malária/genética , Malária Falciparum/sangue , Malária Falciparum/complicações , Masculino , Carga Parasitária , Polimorfismo de Fragmento de Restrição
8.
Mol Med ; 22: 570-584, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27579474

RESUMO

Severe malarial anemia [SMA, hemoglobin (Hb) <5.0 g/dL] is a leading cause of global morbidity and mortality among children residing in Plasmodium falciparum transmission regions. Exploration of molecular pathways through global gene expression profiling revealed that SMA was characterized by decreased HSPA1A, a heat shock protein (Hsp) 70 coding gene. Hsp70 is a ubiquitous chaperone that regulates Nuclear Factor-kappa B (NF-κB) signaling and production of pro-inflammatory cytokines known to be important in malaria pathogenesis (e.g., IL-1ß, IL-6 and TNF-α). Since the role of host Hsp70 in malaria pathogenesis is unexplored, we investigated Hsp70 and molecular pathways in children with SMA. Validation experiments revealed that leukocytic HSP70 transcripts were reduced in SMA relative to non-severe malaria, and that intraleukocytic hemozoin (PfHz) was associated with lower HSP70. HSP70 was correlated with reticulocyte production and Hb. Since glutamine (Gln) up-regulates Hsp70, modulates NF-κB activation, and attenuates over-expression of pro-inflammatory cytokines, circulating Gln was measured in children with malaria. Reduced Gln was associated with increased risk of developing SMA. Treatment of cultured peripheral blood mononuclear cells (PBMCs) with PfHz caused a time-dependent decrease in Hsp70 transcripts/protein, and NF-κB activation. Gln treatment of PBMCs overcame PfHz-induced suppression of HSP70 transcripts/protein, reduced NF-κB activation, and suppressed over-expression of IL-1ß, IL-6 and TNF-α. Findings here demonstrate that SMA is characterized by reduced intraleukocytic HSP70 and circulating Gln, and that PfHz-induced suppression of HSP70 can be reversed by Gln. Thus, Gln supplementation may offer important immunotherapeutic options for futures studies in children with SMA.

9.
Nat Commun ; 15(1): 5037, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866743

RESUMO

This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, compares the entire expressed whole blood host transcriptome between Kenyan children (3-48 mos.) with non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA, signifying impairments in host inflammasome activation, cell death, and innate immune and cellular stress responses. Immune cell profiling shows decreased memory responses, antigen presentation, and immediate pathogen clearance, suggesting an immature/improperly regulated immune response in SMA. Module repertoire analysis of blood-specific gene signatures identifies up-regulation of erythroid genes, enhanced neutrophil activation, and impaired inflammatory responses in SMA. Enrichment analyses converge on disruptions in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome system, autophagy, and heme metabolism. Pathway analyses highlight activation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)-1 target and Reactive Oxygen Species (ROS) signaling] as a central theme in SMA. These signaling pathways are also top-ranking in protein abundance measures and a Ugandan SMA cohort with available transcriptomic data. Targeted RNA-Seq validation shows strong concordance with our entire expressed transcriptome data. These findings identify key molecular themes in SMA pathogenesis, offering potential targets for new malaria therapies.


Assuntos
Anemia , Transcriptoma , Humanos , Anemia/genética , Anemia/sangue , Pré-Escolar , Lactente , Feminino , Malária/sangue , Malária/genética , Quênia , Masculino , Perfilação da Expressão Gênica , Imunidade Inata/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/sangue
10.
BMC Immunol ; 14: 15, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23521898

RESUMO

In holoendemic Plasmodium falciparum transmission areas such as western Kenya, severe malarial anemia [SMA, hemoglobin (Hb) < 6.0 g/dL, with any density parasitemia] is the most common clinical manifestation of severe malaria resulting in high rates of pediatric morbidity and mortality in these regions. Previous studies associated interleukin (IL)-13 with pathogenesis of different infectious diseases, including P. falciparum malaria. However, the functional roles of polymorphic variants within the IL-13 promoter in conditioning susceptibility to SMA remain largely unexplored. As such, the association between the IL-13 variants -7402 T/G (rs7719175) and -4729G/A (rs3091307) and susceptibility to SMA was determined in children (n = 387) presenting with clinical symptoms of falciparum malaria and resident in a holoendemic transmission region in western Kenya. Our results indicated no difference in the proportions of individual genotypes among children presenting with non-SMA (n = 222) versus SMA (n = 165). Similarly, there was no associations between the individual genotypes (-7402 T/G and -4729G/A) and SMA. Additional analyses, however, revealed that proportions of individuals with -7402 T/-4729A (TA) haplotype was significantly higher in children presenting with SMA than non-SMA group (P = 0.043). A further multivariate logistic regression analyses, controlling for confounding factors, demonstrated that carriage of the TA haplotype was associated with increased susceptibility to SMA (OR; 1.564, 95% CI; 1.023-2.389, P = 0.039). In addition, circulating levels of IL-13 were comparable between the clinical groups as well as across genotypes and haplotypes. Collectively, findings presented here suggest that haplotypes within the IL-13 promoter at -7402 T/G and -4729G/A may modulate SMA pathogenesis, but do not affect circulating IL-13 levels.


Assuntos
Anemia/genética , Predisposição Genética para Doença , Interleucina-13/sangue , Interleucina-13/genética , Malária/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Anemia/sangue , Anemia/complicações , Criança , Demografia , Estudos de Associação Genética , Haplótipos/genética , Humanos , Lactente , Malária/sangue , Malária/complicações
11.
Res Sq ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503086

RESUMO

This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, analyzed the entire expressed transcriptome in whole blood from children with non-SMA (Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25). Analyses revealed 3,420 up-regulated and 3,442 down-regulated transcripts, signifying impairments in host inflammasome activation, cell death, innate immune responses, and cellular stress responses in SMA. Immune cell profiling showed a decreased antigenic and immune priming response in children with SMA, favoring polarization toward cellular proliferation and repair. Enrichment analysis further identified altered neutrophil and autophagy-related processes, consistent with neutrophil degranulation and altered ubiquitination and proteasome degradation. Pathway analyses highlighted SMA-related alterations in cellular homeostasis, signaling, response to environmental cues, and cellular and immune stress responses. Validation with a qRT-PCR array showed strong concordance with the sequencing data. These findings identify key molecular themes in SMA pathogenesis, providing potential targets for new malaria therapies.

12.
Infect Immun ; 80(12): 4435-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23045477

RESUMO

An understanding of the immunogenetic basis of naturally acquired immunity to Plasmodium falciparum infection would aid in the designing of a rationally based malaria vaccine. Variants within the Fc gamma receptors (FcγRs) mediate immunity through engagement of immunoglobulin G and other immune mediators, such as gamma interferon (IFN-γ), resulting in erythrophagocytosis and production of inflammatory cytokines in severe malarial anemia (SMA). The Toll-like receptors (TLRs) trigger transcription of proinflammatory cytokines and induce adaptive immune responses. Therefore, these receptors may condition malaria disease pathogenesis through alteration in adaptive and innate immune responses. To further delineate the impacts of FcγRIIIA and TLR9 in SMA pathogenesis, the associations between FcγRIIIA -176F/V and TLR9 -1237T/C variants, SMA (hemoglobin [Hb] < 6.0 g/dl), and circulating IFN-γ levels were investigated in children (n = 301) from western Kenya with acute malaria. Multivariate logistic regression analysis (controlling for potential confounders) revealed that children with the FcγRIIIA -176V/TLR9 -1237C (VC) variant combination had 64% reduced odds of developing SMA (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.20 to 0.64; P = 0.001), while carriers of the FcγRIIIA -176V/TLR9 -1237T (VT) variant combination were twice as susceptible to SMA (OR, 2.04; 95% CI, 1.19 to 3.50; P = 0.009). Children with SMA had higher circulating IFN-γ levels than non-SMA children (P = 0.008). Hemoglobin levels were negatively correlated with IFN-γ levels (r = -0.207, P = 0.022). Consistently, the FcγRIIIA -176V/TLR9 -1237T (VT) carriers had higher levels of circulating IFN-γ (P = 0.011) relative to noncarriers, supporting the observation that higher IFN-γ levels are associated with SMA. These results demonstrate that FcγRIIIA-176F/V and TLR9 -1237T/C variants condition susceptibility to SMA and functional changes in circulating IFN-γ levels.


Assuntos
Anemia/prevenção & controle , Predisposição Genética para Doença , Interferon gama/sangue , Malária Falciparum/complicações , Polimorfismo de Nucleotídeo Único/genética , Receptores de IgG/genética , Receptor Toll-Like 9/genética , Anemia/epidemiologia , Anemia/fisiopatologia , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Regiões Promotoras Genéticas/genética , Índice de Gravidade de Doença
13.
Hum Genet ; 131(8): 1375-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570109

RESUMO

Severe malarial anemia (SMA) is a leading cause of pediatric morbidity and mortality in holoendemic Plasmodium falciparum transmission areas. Although dysregulation in cytokine production is an important etiology of SMA, the role of IFN-α in SMA has not been reported. As such, we investigated the relationship between IFN-α promoter polymorphisms [i.e., IFNA2 (A-173T) and IFNA8 (T-884A)], SMA, and functional changes in IFN-α production in children (n = 663; <36 months) residing in a holoendemic P. falciparum transmission region of Kenya. Children with SMA had lower circulating IFN-α than malaria-infected children without severe anemia (P = 0.025). Multivariate logistic regression analyses revealed that heterozygosity at -884 (TA) was associated with an increased risk of SMA [OR 2.80 (95 % CI 1.22-6.43); P = 0.015] and reduced IFN-α relative to wild type (TT; P = 0.038). Additional analyses demonstrated that carriage of the -173T/-884A (TA) haplotype was associated with increased susceptibility to SMA [OR 3.98 (95 % CI 1.17-13.52); P = 0.026] and lower IFN-α (P = 0.031). Follow-up of these children for 36 months revealed that carriers of TA haplotype had greater all-cause mortality than non-carriers (P < 0.001). Generation of reporter constructs showed that the IFNA8 wild-type -884TT exhibited higher levels of luciferase expression than the variant alleles (P < 0.001). Analyses of malaria-associated inflammatory mediators demonstrated that carriers of TA haplotype had altered production of IL-1ß, MIG, and IL-13 compared to non-carriers (P < 0.050). Thus, variation at IFNA2 -173 and IFNA8 -884 conditions reduced IFN-α production, and increased susceptibility to SMA and mortality.


Assuntos
Anemia/genética , Causas de Morte , Predisposição Genética para Doença , Haplótipos , Interferon-alfa/biossíntese , Malária/etiologia , Anemia/complicações , Sequência de Bases , Linhagem Celular , Primers do DNA , Feminino , Humanos , Lactente , Interferon-alfa/genética , Estudos Longitudinais , Masculino , Reação em Cadeia da Polimerase
14.
Hum Genet ; 131(2): 289-99, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21818580

RESUMO

Development of protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG to Fc gamma (γ) receptors. Variations in human FcγRIIA-H/R-131 and FcγRIIIB-NA1/NA2 affect differential binding of IgG sub-classes. Since variability in FcγR may play an important role in severe malarial anemia (SMA) pathogenesis by mediating phagocytosis of red blood cells and triggering cytokine production, the relationship between FcγRIIA-H/R131 and FcγRIIIB-NA1/NA2 haplotypes and susceptibility to SMA (Hb < 6.0 g/dL) was investigated in Kenyan children (n = 528) with acute malaria residing in a holoendemic P. falciparum transmission region. In addition, the association between carriage of the haplotypes and repeated episodes of SMA and all-cause mortality were investigated over a 3-year follow-up period. Since variability in FcγR can alter interferon (IFN)-γ production, a mediator of innate and adaptive immune responses, functional associations between the haplotypes and IFN-γ were also explored. During acute malaria, children with SMA had elevated peripheral IFN-γ levels (P = 0.006). Although multivariate logistic regression analyses (controlling for covariates) revealed no associations between the FcγR haplotypes and susceptibility to SMA during acute infection, the FcγRIIA-131H/FcγRIIIB-NA1 haplotype was associated with decreased peripheral IFN-γ (P = 0.046). Longitudinal analyses showed that carriage of the FcγRIIA-131H/FcγRIIIB-NA1 haplotype was associated with reduced risk of SMA (RR 0.65, 95% CI 0.46-0.90; P = 0.012) and all-cause mortality (P = 0.002). In contrast, carriers of the FcγRIIA-131H/FcγRIIIB-NA2 haplotype had increased susceptibility to SMA (RR 1.47, 95% CI 1.06-2.04; P = 0.020). Results here demonstrate that variation in the FcγR gene alters susceptibility to repeated episodes of SMA and mortality, as well as functional changes in IFN-γ production.


Assuntos
Anemia/complicações , Anemia/genética , Interferon gama/metabolismo , Malária/genética , Malária/mortalidade , Receptores de IgG/genética , Receptores de IgG/metabolismo , Pré-Escolar , Proteínas Ligadas por GPI/metabolismo , Predisposição Genética para Doença , Haplótipos , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Estudos Longitudinais , Recidiva
15.
Am J Hematol ; 87(8): 782-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730036

RESUMO

In holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens. We have previously shown that COX-2-derived PGE(2) levels are reduced in children residing in hyperendemic transmission regions with cerebral malaria and in those with mixed sequelae of anemia and hyperparasitemia. Our in vitro studies further demonstrated that reduced PGE(2) was due to downregulation of COX-2 gene products following phagocytosis of malarial pigment (hemozoin, PfHz). However, as COX-2-PGE(2) pathways and the impact of naturally acquired PfHz on erythropoietic responses have not been determined in children with SMA, plasma and urinary bicyclo-PGE(2)/creatinine and leukocytic COX-2 transcripts were determined in parasitized children (<36 months) stratified into SMA (n = 36) and non-SMA (Hb ≥ 6.0 g/dL; n = 38). Children with SMA had significantly reduced plasma (P = 0.001) and urinary (P < 0.001) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.007). There was a significant positive association between Hb and both plasma (r = 0.363, P = 0.002) and urinary (r = 0.500, P = 0.001)] bicyclo-PGE(2)/creatinine. Furthermore, decreased systemic bicyclo-PGE(2)/creatinine was associated with inefficient erythropoiesis (i.e., reticulocyte production index; RPI < 2.0, P = 0.026). Additional analyses demonstrated that plasma (P = 0.031) and urinary (P = 0.070) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.026) progressively declined with increasing concentrations of naturally acquired PfHz by monocytes. Results presented here support a model in which reduced COX-2-derived PGE(2), driven in part by naturally acquired PfHz by monocytes, promotes decreased erythropoietic responses in children with SMA.


Assuntos
Anemia , Ciclo-Oxigenase 2/biossíntese , Dinoprostona , Eritropoese , Regulação Enzimológica da Expressão Gênica , Hemeproteínas/metabolismo , Malária Falciparum , Anemia/sangue , Anemia/parasitologia , Anemia/urina , Pré-Escolar , Creatinina/sangue , Creatinina/urina , Dinoprostona/sangue , Dinoprostona/urina , Feminino , Humanos , Lactente , Malária Falciparum/sangue , Malária Falciparum/urina , Masculino , Monócitos/metabolismo , Monócitos/parasitologia , Parasitemia , Fagocitose , Índice de Gravidade de Doença
16.
BMC Infect Dis ; 12: 143, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22726955

RESUMO

BACKGROUND: Over the years, reports implicate improper anti-malarial use as a major contributor of morbidity and mortality amongst millions of residents in malaria endemic areas, Kenya included. However, there are limited reports on improper use of Artemisinin-based Combination Therapy (ACT) which is a first-line drug in the treatment of malaria in Kenya. Knowing this is important for ensured sustainable cure rates and also protection against the emergence of resistant malarial parasites. We therefore investigated ACT adherence level, factors associated with non-adherence and accessibility in households (n = 297) in rural location of Southeast Alego location in Siaya County in western Kenya. METHODS: ACT Adherence level was assessed with reference to the duration of treatment and number of tablets taken. Using systematic random sampling technique, a questionnaire was administered to a particular household member who had the most recent malaria episode (<2 weeks) and used ACT for cure. Parents/caretakers provided information for children aged <13 years. Key Informant Interviews (KIIs) were also conducted with healthcare providers and private dispensing chemist operators. RESULTS: Adherence to ACT prescription remained low at 42.1% and 57.9% among individuals above 13 and less than 13 years, respectively. Stratification by demographic and socio-economic characteristics in relation to ACT adherence revealed that age (P = 0.011), education level (P < 0.01), ability to read (P < 0.01) and household (HH) monthly income (P = 0.002) significantly affected the level of ACT adherence. Consistently, logistic regression model demonstrated that low age (OR, 0.571, 95% CI, 0.360-0.905; P = 0.017), higher education level (OR, 0.074; 95% CI 0.017-0.322; P < 0.01), ability to read (OR, 0.285, 95% CI, 0.167-0.486; P < 0.01) and higher income (Ksh. > 9000; OR, 0.340; 95% CI, 0.167-0.694; P = 0.003) were associated with ACT adherence. In addition, about 52.9% of the respondents reported that ACT was not always available at the source and that drug availability (P = 0.020) and distance to drug source (P < 0.01) significantly affected accessibility. CONCLUSIONS: This study demonstrates that more than half of those who get ACT prescription do not take recommended dose and that accessibility is of concern. The findings of this study suggest a potential need to improve accessibility and also initiate programmatic interventions to encourage patient-centred care.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Malária/tratamento farmacológico , Adesão à Medicação/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Quimioterapia Combinada/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Quênia , Masculino , Pessoa de Meia-Idade , População Rural , Inquéritos e Questionários , Adulto Jovem
17.
Biochem Biophys Rep ; 29: 101207, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35071802

RESUMO

Plasmodium falciparum (Pf) malaria is among the leading causes of childhood morbidity and mortality worldwide. During a natural infection, ingestion of the malarial parasite product, hemozoin (PfHz), by circulating phagocytic cells induces dysregulation in innate immunity and enhances malaria pathogenesis. Treatment of cultured peripheral blood mononuclear cells (PBMCs) from healthy, malaria-naïve donors with physiological concentrations of PfHz can serve as an in vitro model to investigate cellular processes. Although disruptions in host ubiquitination processes are central to the pathogenesis of many diseases, this system remains unexplored in malaria. As such, we investigated the impact of PfHz on the temporal expression patterns of 84 genes involved in ubiquitination processes. Donor PBMCs were cultured in the absence or presence of PfHz for 3-, 9-, and 24 h. Stimulation with PfHz for 3 h did not significantly alter gene expression. Incubation for 9 h, however, elicited significant changes for 6 genes: 4 were down-regulated (FBXO4, NEDD8, UBE2E3, and UBE2W) and 2 were up-regulated (HERC5 and UBE2J1). PfHz treatment for 24 h significantly altered expression for 14 genes: 12 were down-regulated (ANAPC11, BRCC3, CUL4B, FBXO4, MIB1, SKP2, TP53, UBA2, UBA3, UBE2G1, UBE2G2, and WWP1), while 2 were up-regulated (UBE2J1 and UBE2Z). Collectively, these results demonstrate that phagocytosis of PfHz by PBMCs elicits temporal changes in the transcriptional profiles of genes central to host ubiquitination processes. Results presented here suggest that disruptions in ubiquitination may be a previously undiscovered feature of malaria pathogenesis.

18.
Front Genet ; 13: 977810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186473

RESUMO

Background: Severe malarial anemia (SMA; Hb < 5.0 g/dl) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission regions such as western Kenya. Methods: We investigated the relationship between two novel complement component 5 (C5) missense mutations [rs17216529:C>T, p(Val145Ile) and rs17610:C>T, p(Ser1310Asn)] and longitudinal outcomes of malaria in a cohort of Kenyan children (under 60 mos, n = 1,546). Molecular modeling was used to investigate the impact of the amino acid transitions on the C5 protein structure. Results: Prediction of the wild-type and mutant C5 protein structures did not reveal major changes to the overall structure. However, based on the position of the variants, subtle differences could impact on the stability of C5b. The influence of the C5 genotypes/haplotypes on the number of malaria and SMA episodes over 36 months was determined by Poisson regression modeling. Genotypic analyses revealed that inheritance of the homozygous mutant (TT) for rs17216529:C>T enhanced the risk for both malaria (incidence rate ratio, IRR = 1.144, 95%CI: 1.059-1.236, p = 0.001) and SMA (IRR = 1.627, 95%CI: 1.201-2.204, p = 0.002). In the haplotypic model, carriers of TC had increased risk of malaria (IRR = 1.068, 95%CI: 1.017-1.122, p = 0.009), while carriers of both wild-type alleles (CC) were protected against SMA (IRR = 0.679, 95%CI: 0.542-0.850, p = 0.001). Conclusion: Collectively, these findings show that the selected C5 missense mutations influence the longitudinal risk of malaria and SMA in immune-naïve children exposed to holoendemic P. falciparum transmission through a mechanism that remains to be defined.

19.
Trop Med Health ; 50(1): 41, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752805

RESUMO

Plasmodium falciparum infections remain among the leading causes of morbidity and mortality in holoendemic transmission areas. Located within region 5q31.1, the colony-stimulating factor 2 gene (CSF2) encodes granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic growth factor that mediates host immune responses. Since the effect of CSF2 variation on malaria pathogenesis remains unreported, we investigated the impact of two genetic variants in the 5q31.1 gene region flanking CSF2:g-7032 G > A (rs168681:G > A) and CSF2:g.64544T > C (rs246835:T > C) on the rate and timing of malaria and severe malarial anemia (SMA, Hb < 5.0 g/dL) episodes over 36 months of follow-up. Children (n = 1654, aged 2-70 months) were recruited from a holoendemic P. falciparum transmission area of western Kenya. Decreased incidence rate ratio (IRR) for malaria was conferred by inheritance of the CSF2:g.64544 TC genotype (P = 0.0277) and CSF2 AC/GC diplotype (P = 0.0015). Increased IRR for malaria was observed in carriers of the CSF2 AT/GC diplotype (P = 0.0237), while the inheritance of the CSF2 AT haplotype increased the IRR for SMA (P = 0.0166). A model estimating the longitudinal risk of malaria showed decreased hazard rates among CSF2 AC haplotype carriers (P = 0.0045). Investigation of all-cause mortality revealed that inheritance of the GA genotype at CSF2:g-7032 increased the risk of mortality (P = 0.0315). Higher risk of SMA and all-cause mortality were observed in younger children (P < 0.0001 and P = 0.0015), HIV-1(+) individuals (P < 0.0001 and P < 0.0001), and carriers of HbSS (P = 0.0342 and P = 0.0019). Results from this holoendemic P. falciparum area show that variation in gene region 5q31.1 influences susceptibility to malaria, SMA, and mortality, as does age, HIV-1 status, and inheritance of HbSS.

20.
Exp Biol Med (Maywood) ; 247(8): 672-682, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842470

RESUMO

Severe malarial anemia (SMA) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission regions. To gain enhanced understanding of predisposing factors for SMA, we explored the relationship between complement component 3 (C3) missense mutations [rs2230199 (2307C>G, Arg>Gly102) and rs11569534 (34420G>A, Gly>Asp1224)], malaria, and SMA in a cohort of children (n = 1617 children) over 36 months of follow-up. Variants were selected based on their ability to impart amino acid substitutions that can alter the structure and function of C3. The 2307C>G mutation results in a basic to a polar residue change (Arg to Gly) at position 102 (ß-chain) in the macroglobulin-1 (MG1) domain, while 34420G>A elicits a polar to acidic residue change (Gly to Asp) at position 1224 (α-chain) in the thioester-containing domain. After adjusting for multiple comparisons, longitudinal analyses revealed that inheritance of the homozygous mutant (GG) at 2307 enhanced the risk of SMA (RR = 2.142, 95%CI: 1.229-3.735, P = 0.007). The haplotype containing both wild-type alleles (CG) decreased the incident risk ratio of both malaria (RR = 0.897, 95%CI: 0.828-0.972, P = 0.008) and SMA (RR = 0.617, 95%CI: 0.448-0.848, P = 0.003). Malaria incident risk ratio was also reduced in carriers of the GG (Gly102Gly1224) haplotype (RR = 0.941, 95%CI: 0.888-0.997, P = 0.040). Collectively, inheritance of the missense mutations in MG1 and thioester-containing domain influence the longitudinal risk of malaria and SMA in children exposed to intense Plasmodium falciparum transmission.


Assuntos
Anemia , Complemento C3 , Malária Falciparum , Anemia/genética , Anemia/parasitologia , Criança , Complemento C3/genética , Predisposição Genética para Doença , Humanos , Malária Falciparum/complicações , Malária Falciparum/genética , Mutação , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa