Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(37): E8765-E8774, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150378

RESUMO

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Neurônios/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ventrículos Laterais/patologia , Masculino , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/fisiologia , Panobinostat , Ratos
2.
J Neurosci ; 31(36): 12790-801, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21900558

RESUMO

Posttranslational amyloid-ß (Aß) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aß species, pyroglutamate-amyloid-ß (pE3-Aß), has been described as a major constituent of Aß deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aß species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aß aggregates rapidly and is known to seed additional Aß aggregation. To directly investigate pE3-Aß toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human Aß. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating Aß and pE3-Aß deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-Aß neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-Aß formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-Aß levels. Hence, lowering the rate of QC-dependent posttranslational pE3-Aß formation can, in turn, lower the amount of neurotoxic Aß species in AD.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Hipocampo/patologia , Ácido Pirrolidonocarboxílico/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/patologia , Animais , Comportamento Animal , Encéfalo/patologia , Ensaio de Imunoadsorção Enzimática , Gliose/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/psicologia , Humanos , Imuno-Histoquímica , Cinética , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microscopia Eletrônica , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Fenótipo , Equilíbrio Postural/fisiologia , Processamento de Proteína Pós-Traducional , Reflexo de Sobressalto/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Hum Mol Genet ; 17(17): 2595-609, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18502785

RESUMO

Recent clinical studies have highlighted that female sex hormones represent potential neuroprotective mediators against damage caused by acute and chronic brain diseases. This evidence has been confirmed by experimental studies documenting the protective role of female sex hormones both in vitro and in vivo, although these studies did not specifically focus on Huntington's disease (HD). We therefore investigated the onset and course of HD in female and male transgenic (tg) HD (CAG(n51)) and control rats across age and focused on three aspects: (i) behavioral and physiological alterations (energy expenditure, home-cage activity, emotional disturbance and motor dysfunction), (ii) morphological markers (numbers and characteristics of striatal DARPP32(+) medium-sized spiny neurons (MSNs) and dopamine receptor autoradiography) and (iii) peripheral sex hormone levels as well as striatal estrogen receptor expression. Independent of their sex, tgHD rats exhibited increased levels of food intake, elevated home-cage activity scores and anxiolytic-like behavior, whereas only males showed an impairment of motor function. In line with the latter finding, loss and atrophy of DARPP32(+) MSNs were apparent only in male tgHD rats. This result was associated with a decreased striatal dopamine D1 receptor density and lower plasma levels of 17beta-estradiol at the age of 14 months. As DARPP32(+) MSNs expressed both alpha- and beta-estrogen receptors and showed a correlation between cell numbers and 17beta-estradiol levels, our findings suggest sex-related differences in the HD phenotype pointing to a substantial neuroprotective effect of sex hormones and opening new perspectives on the therapy of HD.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Estradiol/sangue , Doença de Huntington/fisiopatologia , Neurônios/fisiologia , Caracteres Sexuais , Animais , Gânglios da Base/patologia , Gânglios da Base/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Humanos , Doença de Huntington/patologia , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
4.
J Histochem Cytochem ; 56(2): 147-55, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17967935

RESUMO

The expression of dipeptidyl peptidase 4 (DP4, CD26) affects T-cell recruitment to lungs in an experimental rat asthma model. Furthermore, the gene of the structural homologous DP10 represents a susceptibility locus for asthma in humans, and the functional homologous DP8/9 are expressed in human leukocytes. Thus, although several mechanisms may account for a role of DP4-like peptidases in asthma, detailed information on their anatomical sites of expression and function in lungs is lacking. Therefore, bronchi and lung parenchyma were evaluated using immunohistochemistry and histochemical/enzymatic activity assays, as well as quantitative real-time PCR for this family of peptidases in naïve and asthmatic rat lungs derived from wild-type F344 and DP4-deficient F344 rat strains. Surprisingly, results show not only that the induction of experimental asthma increases DP4 enzymatic activity in the bronchoalveolar lavage fluid and parenchyma, but also that DP8/9 enzymatic activity is regulated and, as well as the expression of DP10, primarily found in the bronchial epithelium of the airways. This is the first report showing a differential and site-specific DP4-like expression and function in the lungs, suggesting a pathophysiologically significant role in asthma.


Assuntos
Asma/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases/biossíntese , Pulmão/enzimologia , Animais , Brônquios/enzimologia , Dipeptidil Peptidase 4/biossíntese , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Regulação Enzimológica da Expressão Gênica , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Endogâmicos F344
5.
Front Neurosci ; 12: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422836

RESUMO

The transgenic rat model of Huntington disease expressing a fragment of mutant HTT (tgHD rat) has been thoroughly characterized and reproduces hallmark symptoms of human adult-onset HD. Pursuing the optimization of this model for evaluation of translational therapeutic approaches, the F344 inbred rat strain was considered as advantageous genetic background for the expression of the HD transgenic construct. In the present study, a novel congenic line of the SPRDtgHD transgenic model of HD, carrying 51 CAG repeats, was generated on the F344 rat genetic background. To assess the behavioral phenotype, classical assays investigating motor function, emotion, and sensorimotor gating were applied, along with automated screening of metabolic and activity parameters as well as operant conditioning tasks. The neuropathological phenotype was analyzed by immunohistochemistry and ex vivo magnetic resonance imaging. F344tgHD rats displayed markedly reduced anxiety-like behavior in the social interaction test and elevated impulsivity traits already at 3 months of age. Neuropathologically, reduced striatal volume and pronounced aggregation of mutant huntingtin in several brain regions were detected at later disease stage. In conclusion, the congenic F344tgHD model reproduces key aspects of the human HD phenotype, substantiating its value for translational therapeutic approaches.

6.
J Neurosci Methods ; 234: 38-53, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25020253

RESUMO

BACKGROUND: The need for improving throughput, validity, and reliability in the behavioral characterization of rodents may benefit from integrating automated intra-home-cage-screening systems allowing the simultaneous detection of multiple behavioral and physiological parameters in parallel. NEW METHOD: To test this hypothesis, transgenic Huntington's disease (tgHD) rats were repeatedly screened within phenotyping home-cages (PhenoMaster and IntelliCage for rats), where spontaneous activity, feeding, drinking, temperature, and metabolic performance were continuously measured. Cognition and emotionality were evaluated within the same environment by means of operant learning procedures and refined analysis of the behavioral display under conditions of novelty. This investigator-independent approach was further correlated with behavioral display of the animals in classical behavioral assays. Multivariate analysis (MVA) including Principle Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) was used to explore correlation patterns of variables within and across the two genotypes. RESULTS: The automated systems traced previously undetected aspects in the phenotype of tgHD rats (circadian activity, energy metabolism, rearing), and out of those spontaneous free rearing correlated with individual performance in the accelerod test. PCA revealed a segregation by genotype in juvenile tgHD rats that differed from adult animals, being further resolved by PLS-DA detecting "temperature" (juvenile) and "rearing" (adult) as phenotypic key variables in the tgHD model. CONCLUSIONS: Intra-home-cage phenotyping in combination with MVA, is capable of characterizing a complex phenotype by detecting novel physiological and behavioral markers with high sensitivity and standardization using fewer human resources. A broader application of automated systems for large-scale screening is encouraged.


Assuntos
Mineração de Dados , Processamento Eletrônico de Dados , Doença de Huntington , Monitorização Fisiológica/métodos , Fenótipo , Animais , Análise Discriminante , Modelos Animais de Doenças , Proteína Huntingtina , Doença de Huntington/complicações , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Monitorização Fisiológica/instrumentação , Análise Multivariada , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
7.
Physiol Rep ; 1(5): e00095, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24303167

RESUMO

The CD26-associated enzymatic activity of dipeptidyl peptidase-4 (DPP4) as well as the recruitment of CD26(+) T cells increase under allergic airway inflammation. Furthermore, genetic deficiency of CD26/DPP4 exerts protective effects in experimental asthma. Therefore, CD26/DPP4 might represent a novel therapeutic target in asthma. To study the effects of pharmacological inhibition of DPP4 on allergic airway inflammation the DPP4-inhibitor isoleucine thiazolidide was tested using different doses at different time points (at sensitization, immediately before and simultaneously with the allergen challenge, as well as continuously via drinking water), and different routes (intraperitoneal, oral, and by inhalation). Allergic-like airway inflammation was induced in Fischer 344 rats (Charles River) sensitized against ovalbumin (OVA) using OVA aerosols. Intraperitoneal application of the DPP4 inhibitor showed effects neither at sensitization nor at challenge, whereas a continuous application via drinking water using high doses of the inhibitor led to an aggravation of the histomorphological signs of airway inflammation. In contrast, aerosolization of the DPP4 inhibitor simultaneously with the allergen significantly reduced airway hyperresponsiveness and ameliorated histopathological signs compared to controls. In addition, this treatment resulted in increased mRNA levels of surfactant proteins, suggesting an involvement of DPP4 inhibitors in surfactant metabolism in OVA-challenged rats. Continuous systemic inhibition of DPP4 via the oral route aggravates allergic airway inflammation. In contrast, topical inhibition of DPP4 exerts potential protective effects, and further research in humans is needed.

8.
J Neuropathol Exp Neurol ; 69(7): 717-28, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20535034

RESUMO

Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction. We found a disease-associated progressive decline in hippocampal progenitor cell proliferation accompanied by an expansion of the pool of 5-bromo-2-deoxyuridine label-retaining Sox-2-positive quiescent stem cells in the transgenic animals. Increments in quiescent stem cells occurred at the expense of cAMP-responsive element-binding protein-mediated neuronal differentiation and survival. Because elevated levels of transforming growth factor-beta1 (TGF-beta1) impair neural progenitor proliferation, we investigated hippocampal TGF-beta signaling and determined that TGF-beta1 induces the neural progenitors to exit the cell cycle. Although phospho-Smad2, an effector of TGF-beta signaling, is normally absent in subgranular stem cells, it accumulated progressively in Sox2/glial fibrillary acidic protein-expressing cells of the subgranular zone in the transgenic rats. These results indicate that alterations in neurogenesis in transgenic Huntington disease rats occur in successive phases that are associated with increasing TGF-beta signaling. Thus, TGF-beta1 signaling seems to be a crucial modulator of neurogenesis in Huntington disease and may represent a target for future therapy.


Assuntos
Hipocampo/patologia , Doença de Huntington/patologia , Neurogênese/genética , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo , Fatores Etários , Animais , Animais Geneticamente Modificados , Bromodesoxiuridina/metabolismo , Proteína de Ligação a CREB/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Huntingtina , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Proteínas Nucleares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa