Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1872(3): 140991, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147934

RESUMO

Methionine gamma lyase (MGL) is a bacterial and plant enzyme that catalyzes the conversion of methionine in methanthiol, 2-oxobutanoate and ammonia. The enzyme belongs to fold type I of the pyridoxal 5'-dependent family. The catalytic mechanism and the structure of wild type MGL and variants were determined in the presence of the natural substrate as well as of many sulfur-containing derivatives. Structure-function relationship studies were pivotal for MGL exploitation in the treatment of cancer, bacterial infections, and other diseases. MGL administration to cancer cells leads to methionine starvation, thus decreasing cells viability and increasing their vulnerability towards other drugs. In antibiotic therapy, MGL acts by transforming prodrugs in powerful drugs. Numerous strategies have been pursued for the delivering of MGL in vivo to prolong its bioavailability and decrease its immunogenicity. These include conjugation with polyethylene glycol and encapsulation in synthetic or natural vesicles, eventually decorated with tumor targeting molecules, such as the natural phytoestrogens daidzein and genistein. The scientific achievements in studying MGL structure, function and perspective therapeutic applications came from the efforts of many talented scientists, among which late Tatyana Demidkina to whom we dedicate this review.


Assuntos
Metionina , Racemetionina , Relação Estrutura-Atividade , Catálise , Sobrevivência Celular
2.
Int J Pharm ; 653: 123882, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38342324

RESUMO

The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs. Here, we explore the conjugation of MGL to gold nanoparticles capped with citrate (AuNPs) as a novel strategy to deliver MGL to cancer cells. Measurements of Transmission Electron Microscopy, Dynamic Light Scattering, Asymmetrical Flow Field-Flow Fractionation, X-ray Photoelectron Spectroscopy, and Circular Dichroism allowed to achieve an extensive biophysical and biochemical characterization of the MGL-AuNP complex including particle size, size distribution, MGL loading yield, enzymatic activity, and impact of gold surface on protein structure. Noticeably, we found that activity retention was improved over time for the enzyme adsorbed to AuNPs with respect to the enzyme free in solution. The acquired body of knowledge on the nanocomplex properties and this encouraging stabilizing effect upon conjugation are the necessary basis for further studies aimed at the evaluation of the therapeutic potential of MGL-AuNP complex in a biological milieu.


Assuntos
Antineoplásicos , Liases de Carbono-Enxofre , Nanopartículas Metálicas , Neoplasias , Humanos , Ouro/química , Nanomedicina , Estudos Prospectivos , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/química , Metionina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa