Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 597(23): 5597-5617, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562642

RESUMO

KEY POINTS: Inappropriate intake of key micronutrients in pregnancy is known to alter maternal endocrine status, impair placental development and induce fetal growth restriction. Selenium is an essential micronutrient required for the function of approximately 25 important proteins. However, the specific effects of selenium deficiency during pregnancy on maternal, placental and fetal outcomes are poorly understood. The present study demonstrates that maternal selenium deficiency increases maternal triiodothyronine and tetraiodothyronine concentrations, reduces fetal blood glucose concentrations, and induces fetal growth restriction. Placental expression of key selenium-dependent thyroid hormone converting enzymes were reduced, whereas the expression of key placental nutrient transporters was dysregulated. Selenium deficiency had minimal impact on selenium-dependent anti-oxidants but increased placental copper concentrations and expression of superoxide dismutase 1. These results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring. ABSTRACT: Selenium is a trace element fundamental to diverse homeostatic processes, including anti-oxidant regulation and thyroid hormone metabolism. Selenium deficiency in pregnancy is common and increases the risk of pregnancy complications including fetal growth restriction. Although altered placental formation may contribute to these poor outcomes, the mechanism by which selenium deficiency contributes to complications in pregnancy is poorly understood. Female C57BL/6 mice were randomly allocated to control (>190 µg kg-1 , n = 8) or low selenium (<50 µg kg-1 , n = 8) diets 4 weeks prior to mating and throughout gestation. Pregnant mice were killed at embryonic day 18.5 followed by collection of maternal and fetal tissue. Maternal and fetal plasma thyroid hormone concentrations were analysed, as was placental expression of key selenoproteins involved in thyroid metabolism and anti-oxidant defences. Selenium deficiency increased plasma tetraiodothyronine and triiodothyronine concentrations. This was associated with a reduction in placental expression of key selenodependent deiodinases, DIO2 and DIO3. Placental expression of selenium-dependent anti-oxidants was unaffected by selenium deficiency. Selenium deficiency reduced fetal glucose concentrations, leading to reduced fetal weight. Placental glycogen content was increased within the placenta, as was Slc2a3 mRNA expression. This is the first study to demonstrate that selenium deficiency may reduce fetal weight through increased maternal thyroid hormone concentrations, impaired placental thyroid hormone metabolism and dysregulated placental nutrient transporter expression. The study suggests that the magnitude of selenium deficiency commonly reported in pregnant women may be sufficient to impair thyroid metabolism but not placental anti-oxidant concentrations.


Assuntos
Desenvolvimento Fetal , Placenta/metabolismo , Selênio/deficiência , Hormônios Tireóideos/metabolismo , Animais , Cobre/metabolismo , Feminino , Iodeto Peroxidase/genética , Fígado/embriologia , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Gravidez , Iodotironina Desiodinase Tipo II
2.
Blood Transfus ; 20(6): 465-474, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35848624

RESUMO

BACKGROUND: Antibodies against human neutrophil antigen (HNA)-3a are associated with severe cases of transfusion-related acute lung injury (TRALI). The HNA-3 system is located on choline transporter-like 2 (CTL-2) protein. CTL-2 is encoded by the gene SLC44A2 and a single-nucleotide polymorphism c.461G>A results in two antigens: HNA-3a and HNA-3b. Three HNA-3 genotypes/ phenotypes exist: HNA-3aa, HNA-3bb, and HNA-3ab. Two different pathways of anti-HNA-3a TRALI have been described: a two-hit neutrophil-dependent pathway and a one-hit neutrophil-independent pathway. However, it is not clear whether HNA-3ab heterozygous patients have a lower risk of anti-HNA-3a-mediated TRALI compared to HNA-3aa homozygous patients. MATERIALS AND METHODS: Healthy volunteers were genotyped for HNA-3 by real-time polymerase chain reaction, and phenotyped for HNA-3a by granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) against two donor sera containing anti-HNA-3a antibodies. The two sera were also used in in vitro models of human pulmonary microvascular endothelial cell (HLMVEC) cytotoxicity to investigate pathways of TRALI development. RESULTS: For both anti-HNA-3a sera, GIFT results matched the genotype, with a lower GIFT ratio for HNA-3ab neutrophils compared to HNA-3aa neutrophils, whereas GAT results showed no difference in agglutination. HLMVEC cytotoxicity was not observed in a one-hit neutrophil-independent model but was observed in a two-hit neutrophil-dependent model. Differences in cytotoxicity were observed between the two anti-HNA-3a sera used. Consistent with reduced HNA-3a antigen density as measured by GIFT, HNA-3ab neutrophils mediated less HLMVEC cytotoxicity than HNA-3aa neutrophils. CONCLUSION: HNA-3 genotype and HNA-3a antigen expression impacted the severity of anti-HNA-3a-mediated HLMVEC cytotoxicity in a two-hit neutrophil-dependent model of TRALI. Different HNA-3a antibodies might also impact the magnitude of HLMVEC cytotoxicity.


Assuntos
Neutrófilos , Lesão Pulmonar Aguda Relacionada à Transfusão , Humanos , Isoantígenos/genética , Genótipo , Células Endoteliais
3.
Cell Death Dis ; 9(12): 1150, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30455461

RESUMO

Preeclampsia is a devastating pregnancy disorder. Severity varies widely, and while severe preeclampsia often requires pre-term delivery, women with mild preeclampsia may reach term with minor interventions. The mechanisms that mediate disease severity are poorly understood, but may include adaptive processes by the placenta. We aimed to establish whether in pregnancies that reached term and those that delivered pre-term, the placental response to preeclampsia was intrinsically different, and explore potential adaptive mechanisms. Hydrogen peroxide production and antioxidant activity were increased in term preeclamptic placentae, whereas pre-term preeclamptic placentae had reduced hydrogen peroxide production and reduced function of the antioxidant system superoxide dismutase compared to control placentae. Markers of mitochondrial fission/fusion, apoptosis and the expression level of mitochondrial complexes were differentially disrupted in term compared to pre-term preeclamptic placentae. Mitochondrial respiration and content were increased in term preeclamptic placentae, but mitochondria had a lower respiratory reserve capacity. Mitochondrial respiration and hydrogen peroxide production were increased in healthy term placentae after in vitro hypoxia/reoxygenation. Placentae from preeclamptic pregnancies that reached term showed multiple adaptions that were not present in pre-term preeclamptic placentae. Increased antioxidant activity, and expression of markers of mitochondrial fusion and apoptotic suppression, may relate to salvaging damaged mitochondria. Increased mitochondrial respiration may allow ongoing tissue function even with reduced respiratory efficiency in term preeclamptic pregnancies. Response after in vitro hypoxia/reoxygenation suggests that disruption of oxygen supply is key to placental mitochondrial adaptations. Reactive oxygen species signalling in term preeclamptic placentae may be at a level to trigger compensatory antioxidant and mitochondrial responses, allowing tissue level maintenance of function when there is organelle level dysfunction.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/genética , Placenta/metabolismo , Pré-Eclâmpsia/genética , Adulto , Caspase 3/genética , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Hipóxia/genética , Hipóxia/patologia , Mitocôndrias/metabolismo , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Espécies Reativas de Oxigênio , Superóxido Dismutase/genética , Trofoblastos/metabolismo , Trofoblastos/patologia
4.
Biochem Pharmacol ; 146: 42-52, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947276

RESUMO

Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10µM Auranofin. Auranofin treatment at concentrations of 10µM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10µM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (<10µM) however no effect was noted on either FCFc or Bax at concentrations above 10µM. The inhibition of antioxidant systems in non-cancerous cells by Auranofin is strongly dose dependent, and this inhibition can be altered by selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization.


Assuntos
Antioxidantes/metabolismo , Auranofina/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biomarcadores , Linhagem Celular , Sobrevivência Celular , Regulação Enzimológica da Expressão Gênica , Glutationa Peroxidase/antagonistas & inibidores , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio , Selênio/administração & dosagem , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa