Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 29(12): 1870-1880, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699651

RESUMO

The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , Transporte de RNA , Transcrição Gênica , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a Poli(A)/genética
2.
Macromol Rapid Commun ; 43(19): e2200288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686622

RESUMO

Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Lipossomos , Polímeros/química , Água/química
3.
J Biol Chem ; 289(50): 34543-56, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25336638

RESUMO

The human tRNA thiouridine modification protein (TUM1), also designated as 3-mercaptopyruvate sulfurtransferase (MPST), has been implicated in a wide range of physiological processes in the cell. The roles range from an involvement in thiolation of cytosolic tRNAs to the generation of H2S as signaling molecule both in mitochondria and the cytosol. TUM1 is a member of the sulfurtransferase family and catalyzes the conversion of 3-mercaptopyruvate to pyruvate and protein-bound persulfide. Here, we purified and characterized two novel TUM1 splice variants, designated as TUM1-Iso1 and TUM1-Iso2. The purified proteins showed similar kinetic behavior and comparable pH and temperature dependence. Cellular localization studies, however, showed a different localization pattern between the isoforms. TUM1-Iso1 is exclusively localized in the cytosol, whereas TUM1-Iso2 showed a dual localization both in the cytosol and mitochondria. Interaction studies were performed with the isoforms both in vitro using the purified proteins and in vivo by fluorescence analysis in human cells, using the split-EGFP system. The studies showed that TUM1 interacts with the l-cysteine desulfurase NFS1 and the rhodanese-like protein MOCS3, suggesting a dual function of TUM1 both in sulfur transfer for the biosynthesis of the molybdenum cofactor, and for the thiolation of tRNA. Our studies point to distinct roles of each TUM1 isoform in the sulfur transfer processes in the cell, with different compartmentalization of the two splice variants of TUM1.


Assuntos
Sulfurtransferases/química , Sulfurtransferases/metabolismo , Sequência de Aminoácidos , Liases de Carbono-Enxofre/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Ligação Proteica , Transporte Proteico , Enxofre/metabolismo , Sulfurtransferases/genética , Sulfurtransferases/isolamento & purificação , Temperatura
4.
J Biol Chem ; 288(8): 5426-42, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23281480

RESUMO

The Escherichia coli L-cysteine desulfurase IscS mobilizes sulfur from L-cysteine for the synthesis of several biomolecules such as iron-sulfur (FeS) clusters, molybdopterin, thiamin, lipoic acid, biotin, and the thiolation of tRNAs. The sulfur transfer from IscS to various biomolecules is mediated by different interaction partners (e.g. TusA for thiomodification of tRNAs, IscU for FeS cluster biogenesis, and ThiI for thiamine biosynthesis/tRNA thiolation), which bind at different sites of IscS. Transcriptomic and proteomic studies of a ΔtusA strain showed that the expression of genes of the moaABCDE operon coding for proteins involved in molybdenum cofactor biosynthesis is increased under aerobic and anaerobic conditions. Additionally, under anaerobic conditions the expression of genes encoding hydrogenase 3 and several molybdoenzymes such as nitrate reductase were also increased. On the contrary, the activity of all molydoenzymes analyzed was significantly reduced in the ΔtusA mutant. Characterization of the ΔtusA strain under aerobic conditions showed an overall low molybdopterin content and an accumulation of cyclic pyranopterin monophosphate. Under anaerobic conditions the activity of nitrate reductase was reduced by only 50%, showing that TusA is not essential for molybdenum cofactor biosynthesis. We present a model in which we propose that the direction of sulfur transfer for each sulfur-containing biomolecule is regulated by the availability of the interaction partner of IscS. We propose that in the absence of TusA, more IscS is available for FeS cluster biosynthesis and that the overproduction of FeS clusters leads to a modified expression of several genes.


Assuntos
Coenzimas/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/biossíntese , Enxofre/metabolismo , Liases de Carbono-Enxofre/metabolismo , Eletroforese em Gel Bidimensional , Proteínas Ferro-Enxofre/metabolismo , Modelos Biológicos , Cofatores de Molibdênio , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pteridinas , RNA de Transferência/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos de Sulfidrila/química , Sulfetos/química , Ressonância de Plasmônio de Superfície/métodos , Transcrição Gênica
5.
Nat Commun ; 11(1): 1912, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313256

RESUMO

Metal-containing formate dehydrogenases (FDH) catalyse the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active site. They display a diverse subunit and cofactor composition, but structural information on these enzymes is limited. Here we report the cryo-electron microscopic structures of the soluble Rhodobacter capsulatus FDH (RcFDH) as isolated and in the presence of reduced nicotinamide adenine dinucleotide (NADH). RcFDH assembles into a 360 kDa dimer of heterotetramers revealing a putative interconnection of electron pathway chains. In the presence of NADH, the RcFDH structure shows charging of cofactors, indicative of an increased electron load.


Assuntos
Microscopia Crioeletrônica/métodos , Formiato Desidrogenases/química , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Catálise , Domínio Catalítico , Modelos Moleculares , Molibdênio/química , NAD/química , NAD/metabolismo , Oxirredução , Tungstênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa