Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biol Chem ; 300(6): 107344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705389

RESUMO

MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.


Assuntos
Camundongos Knockout , MicroRNAs , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Deleção de Genes , Tomografia de Coerência Óptica
2.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837708

RESUMO

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Catepsina D , Lisossomos , Epitélio Pigmentado da Retina , Doença de Stargardt , Catepsina D/metabolismo , Catepsina D/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt/metabolismo , Doença de Stargardt/patologia , Doença de Stargardt/genética , Animais , Humanos , Camundongos , Lisossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Knockout , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782457

RESUMO

Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.


Assuntos
Membranas Intracelulares/metabolismo , Lipofuscina/farmacologia , Lisossomos/metabolismo , Necroptose/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento , Oxirredutases do Álcool , Animais , Morte Celular , Humanos , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
4.
J Neurosci ; 42(11): 2180-2189, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091503

RESUMO

The high sensitivity of night vision requires that rod photoreceptors reliably and reproducibly signal the absorption of single photons, a process that depends on tight regulation of intracellular cGMP concentration through the phototransduction cascade. Here in the mouse (Mus musculus), we studied a single-site D167A mutation of the gene for the α subunit of rod photoreceptor phosphodiesterase (PDEA), made with the aim of removing a noncatalytic binding site for cGMP. This mutation unexpectedly eliminated nearly all PDEA expression and reduced expression of the ß subunit (PDEB) to ∼5%-10% of WT. The remaining PDE had nearly normal specific activity; degeneration was slow, with 50%-60% of rods remaining after 6 months. Responses were larger and more sensitive than normal but slower in rise and decay, probably from slower dark turnover of cGMP. Remarkably, responses became much less reproducible than WT, with response variance increasing for amplitude by over 10-fold, and for latency and time-to-peak by >100-fold. We hypothesize that the increase in variance is the result of greater variability in the dark-resting concentration of cGMP, produced by spatial and temporal nonuniformity in spontaneous PDE activity. This variability decreased as stimuli were made brighter, presumably because of greater spatial uniformity of phototransduction and the approach to saturation. We conclude that the constancy of the rod response depends critically on PDE expression to maintain adequate spontaneous PDE activity, so that the concentration of second messenger is relatively uniform throughout the outer segment.SIGNIFICANCE STATEMENT Rod photoreceptors in the vertebrate retina reliably signal the absorption of single photons of light by generating responses that are remarkably reproducible in amplitude and waveform. We show that this reproducibility depends critically on the concentration of the effector enzyme phosphodiesterase (PDE), which metabolizes the second messenger cGMP and generates rod light responses. In rods with the D167A mutation of the α subunit of PDE, only 5%-10% of PDE is expressed. Single-photon responses then become much more variable than in WT rods. We think this variability is caused by spatial and temporal inhomogeneity in the concentration of cGMP in darkness, so that photons absorbed in different parts of the cell produce responses of greatly varying amplitude and waveform.


Assuntos
GMP Cíclico , Diester Fosfórico Hidrolases , Animais , GMP Cíclico/metabolismo , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Reprodutibilidade dos Testes , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
5.
FASEB J ; 36(5): e22309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471581

RESUMO

RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p < .05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.


Assuntos
Proteômica , Peixe-Zebra , Animais , Cegueira/metabolismo , Humanos , Fagocitose , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinoides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
FASEB J ; 34(3): 3693-3714, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989709

RESUMO

Stargardt disease (STGD1), known as inherited retinal dystrophy, is caused by ABCA4 mutations. The pigmented Abca4-/- mouse strain only reflects the early stage of STGD1 since it is devoid of retinal degeneration. This blue light-illuminated pigmented Abca4-/- mouse model presented retinal pigment epithelium (RPE) and photoreceptor degeneration which was similar to the advanced STGD1 phenotype. In contrast, wild-type mice showed no RPE degeneration after blue light illumination. In Abca4-/- mice, the acute blue light diminished the mean autofluorescence (AF) intensity in both fundus short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (NIR-AF) modalities correlating with reduced levels of bisretinoid-fluorophores. Blue light-induced RPE cellular damage preceded the photoreceptors loss. In late-stage STGD1-like patient and blue light-illuminated Abca4-/- mice, lipofuscin and melanolipofuscin granules were found to contribute to NIR-AF, indicated by the colocalization of lipofuscin-AF and NIR-AF under the fluorescence microscope. In this mouse model, the correlation between in vivo and ex vivo assessments revealed histological characteristics of fundus AF abnormalities. The flecks which are hyper AF in both SW-AF and NIR-AF corresponded to the subretinal macrophages fully packed with pigment granules (lipofuscin, melanin, and melanolipofuscin). This mouse model, which has the phenotype of advanced STGD1, is important to understand the histopathology of Stargardt disease.


Assuntos
Retina/diagnóstico por imagem , Doença de Stargardt/diagnóstico por imagem , Doença de Stargardt/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletrorretinografia , Feminino , Imunofluorescência , Humanos , Técnicas In Vitro , Lipofuscina/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Microscopia de Fluorescência , Retina/metabolismo , Tomografia de Coerência Óptica
7.
Proc Natl Acad Sci U S A ; 115(47): E11120-E11127, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397118

RESUMO

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/congênito , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Células Cultivadas , Modelos Animais de Doenças , Lipofuscina/metabolismo , Lisossomos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose/imunologia , Retina/patologia , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Doença de Stargardt , c-Mer Tirosina Quinase/genética
8.
Proc Natl Acad Sci U S A ; 114(15): 3987-3992, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348233

RESUMO

Recessive Stargardt macular degeneration (STGD1) is caused by mutations in the gene for the ABCA4 transporter in photoreceptor outer segments. STGD1 patients and Abca4-/- (STGD1) mice exhibit buildup of bisretinoid-containing lipofuscin pigments in the retinal pigment epithelium (RPE), increased oxidative stress, augmented complement activation and slow degeneration of photoreceptors. A reduction in complement negative regulatory proteins (CRPs), possibly owing to bisretinoid accumulation, may be responsible for the increased complement activation seen on the RPE of STGD1 mice. CRPs prevent attack on host cells by the complement system, and complement receptor 1-like protein y (CRRY) is an important CRP in mice. Here we attempted to rescue the phenotype in STGD1 mice by increasing expression of CRRY in the RPE using a gene therapy approach. We injected recombinant adeno-associated virus containing the CRRY coding sequence (AAV-CRRY) into the subretinal space of 4-wk-old Abca4-/- mice. This resulted in sustained, several-fold increased expression of CRRY in the RPE, which significantly reduced the complement factors C3/C3b in the RPE. Unexpectedly, AAV-CRRY-treated STGD1 mice also showed reduced accumulation of bisretinoids compared with sham-injected STGD1 control mice. Furthermore, we observed slower photoreceptor degeneration and increased visual chromophore in 1-y-old AAV-CRRY-treated STGD1 mice. Rescue of the STGD1 phenotype by AAV-CRRY gene therapy suggests that complement attack on the RPE is an important etiologic factor in STGD1. Modulation of the complement system by locally increasing CRP expression using targeted gene therapy represents a potential treatment strategy for STGD1 and other retinopathies associated with complement dysregulation.


Assuntos
Complemento C3/metabolismo , Degeneração Macular/congênito , Células Fotorreceptoras de Vertebrados/patologia , Receptores de Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Autofagia , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Intraoculares , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Estresse Oxidativo , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Complemento/genética , Receptores de Complemento 3b , Epitélio Pigmentado da Retina/patologia , Retinoides/metabolismo , Doença de Stargardt
9.
J Biol Chem ; 292(52): 21407-21416, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109151

RESUMO

Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.


Assuntos
Rodopsina/metabolismo , Vitamina A/fisiologia , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Camundongos , Camundongos Knockout , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Retinaldeído/metabolismo , Retinoides/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Proteínas Celulares de Ligação ao Retinol/metabolismo , Rodopsina/genética , Rodopsina/fisiologia , Opsinas de Bastonetes/metabolismo , Vitamina A/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(14): E1402-8, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706818

RESUMO

Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (ß-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of ß-CD. Importantly, ß-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of ß-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of ß-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.


Assuntos
Lipofuscina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , beta-Ciclodextrinas/metabolismo , Animais , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Fluorescência , Técnicas In Vitro , Lipofuscina/isolamento & purificação , Camundongos , Camundongos Knockout , Oxirredução , Retinoides/isolamento & purificação
11.
J Biol Chem ; 289(13): 9113-20, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550392

RESUMO

Age-related macular degeneration (AMD) is a common central blinding disease of the elderly. Homozygosity for a sequence variant causing Y402H and I62V substitutions in the gene for complement factor H (CFH) is strongly associated with risk of AMD. CFH, secreted by many cell types, including those of the retinal pigment epithelium (RPE), is a regulatory protein that inhibits complement activation. Recessive Stargardt maculopathy is another central blinding disease caused by mutations in the gene for ABCA4, a transporter in photoreceptor outer segments (OS) that clears retinaldehyde and prevents formation of toxic bisretinoids. Photoreceptors daily shed their distal OS, which are phagocytosed by the RPE cells. Here, we investigated the relationship between the CFH haplotype of human RPE (hRPE) cells, exposure to OS containing bisretinoids, and complement activation. We show that hRPE cells of the AMD-predisposing CFH haplotype (HH402/VV62) are attacked by complement following exposure to bisretinoid-containing Abca4(-/-) OS. This activation was dependent on factor B, indicating involvement of the alternative pathway. In contrast, hRPE cells of the AMD-protective CFH haplotype (YY402/II62) showed no complement activation following exposure to either Abca4(-/-) or wild-type OS. The AMD-protective YY402/II62 hRPE cells were more resistant to the membrane attack complex, whereas HH402/VV62 hRPE cells showed significant membrane attack complex deposition following ingestion of Abca4(-/-) OS. These results suggest that bisretinoid accumulation in hRPE cells stimulates activation and dysregulation of complement. Cells with an intact complement negative regulatory system are protected from complement attack, whereas cells with reduced CFH synthesis because of the Y402H and I62V substitutions are vulnerable to disease.


Assuntos
Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Haplótipos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Membrana Celular/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/biossíntese , Predisposição Genética para Doença/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Epitélio Pigmentado da Retina/patologia
12.
Mol Vis ; 21: 110-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25684976

RESUMO

PURPOSE: To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. METHODS: Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. RESULTS: Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh(-/-) eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh(-/-) mice. Greatly reduced Cfh protein immunohistological signals in the Cfh(-/-) eyes also supported the specificity of the Cfh protein distribution results. CONCLUSIONS: Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC.


Assuntos
Proteínas Inativadoras do Complemento C3b/genética , Fator H do Complemento/genética , Células Epiteliais/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Inativadoras do Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Células Epiteliais/citologia , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Especificidade de Órgãos , Células Fotorreceptoras de Vertebrados/citologia , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/citologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
PLoS One ; 19(5): e0300584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709779

RESUMO

Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Transducina , Animais , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Camundongos , Transducina/metabolismo , Transducina/genética , Retina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética
14.
Nat Commun ; 15(1): 1244, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336975

RESUMO

A major limitation to developing chimeric antigen receptor (CAR)-T cell therapies for solid tumors is identifying surface proteins highly expressed in tumors but not in normal tissues. Here, we identify Tyrosinase Related Protein 1 (TYRP1) as a CAR-T cell therapy target to treat patients with cutaneous and rare melanoma subtypes unresponsive to immune checkpoint blockade. TYRP1 is primarily located intracellularly in the melanosomes, with a small fraction being trafficked to the cell surface via vesicular transport. We develop a highly sensitive CAR-T cell therapy that detects surface TYRP1 in tumor cells with high TYRP1 overexpression and presents antitumor activity in vitro and in vivo in murine and patient-derived cutaneous, acral and uveal melanoma models. Furthermore, no systemic or off-tumor severe toxicities are observed in an immunocompetent murine model. The efficacy and safety profile of the TYRP1 CAR-T cell therapy supports the ongoing preparation of a phase I clinical trial.


Assuntos
Melanoma , Receptores de Antígenos Quiméricos , Neoplasias Uveais , Humanos , Camundongos , Animais , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia Adotiva , Neoplasias Uveais/terapia , Neoplasias Uveais/tratamento farmacológico , Terapia Baseada em Transplante de Células e Tecidos , Glicoproteínas de Membrana , Oxirredutases
15.
Hum Mol Genet ; 20(13): 2560-70, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21493626

RESUMO

Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B.  In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place.  We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle.  We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells.  This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light.  RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels.  Following a 50-60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity.  Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction.  Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.


Assuntos
Proteínas do Olho/metabolismo , Miosinas/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Proteínas do Olho/genética , Humanos , Espaço Intracelular/metabolismo , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina VIIa , Miosinas/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/efeitos da radiação , Retina/metabolismo , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
16.
Proc Natl Acad Sci U S A ; 107(19): 8599-604, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20445106

RESUMO

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Assuntos
Escuridão , Metabolismo Energético/fisiologia , Retina/fisiologia , Animais , Creatina Quinase/antagonistas & inibidores , Creatina Quinase/metabolismo , Dinitrofluorbenzeno/farmacologia , Eletrorretinografia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/efeitos da radiação , Glutamatos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/efeitos da radiação , Modelos Biológicos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Segmento Externo das Células Fotorreceptoras da Retina/efeitos dos fármacos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/efeitos da radiação , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/enzimologia , Vasos Retinianos/efeitos da radiação , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação , Urodelos/fisiologia
17.
J Biol Chem ; 286(21): 18593-601, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21464132

RESUMO

Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Proteínas do Sistema Complemento/genética , Humanos , Lipofuscina/genética , Lipofuscina/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estresse Oxidativo/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Epitélio Pigmentado da Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia
18.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359858

RESUMO

Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Epitélio Pigmentado da Retina , Humanos , Doença de Stargardt , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas do Sistema Complemento/metabolismo , Morte Celular
19.
Transl Vis Sci Technol ; 11(3): 33, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35348597

RESUMO

Purpose: Modern molecular genetics has revolutionized gene discovery, genetic diagnoses, and precision medicine yet many patients remain unable to benefit from these advances as disease-causing variants remain elusive for up to half of Mendelian genetic disorders. Patient-derived induced pluripotent stem (iPS) cells and transcriptomics were used to identify the fate of unsolved ABCA4 alleles in patients with Stargardt disease. Methods: Multiple independent iPS lines were generated from skin biopsies of three patients with Stargardt disease harboring a single identified pathogenic ABCA4 variant. Derived retinal pigment epithelial cells (dRPE) from a normal control and patient cells were subjected to RNA-Seq on the Novaseq6000 platform, analyzed using DESeq2 with calculation of allele specific imbalance from the pathogenic or a known linked variant. Protein analysis was performed using the automated Simple Western system. Results: Nine dRPE samples were generated, with transcriptome analysis on eight. Allele-specific expression indicated normal transcripts expressed from splice variants albeit at low levels, and missense transcripts expressed at near-normal levels. Corresponding protein was not easily detected. Patient phenotype correlation indicated missense variants expressed at high levels have more deleterious outcomes. Transcriptome analysis suggests mitochondrial membrane biodynamics and the unfolded protein response pathway may be relevant in Stargardt disease. Conclusions: Patient-specific iPS-derived RPE cells set the stage to assess non-expressing variants in difficult-to-detect genomic regions using easily biopsied tissue. Translational Relevance: This "Disease in a Dish" approach is likely to enhance the ability of patients to participate in and benefit from clinical trials while providing insights into perturbations in RPE biology.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células Epiteliais , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Fenótipo , Pigmentos da Retina , Doença de Stargardt
20.
J Neurosci ; 29(5): 1486-95, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193895

RESUMO

The first event in light perception is absorption of a photon by the retinaldehyde chromophore of an opsin pigment in a rod or cone photoreceptor cell. This induces isomerization of the chromophore, rendering the bleached pigment insensitive to light. Restoration of light sensitivity requires chemical reisomerization of retinaldehyde via a multistep enzyme pathway, called the visual cycle, in cells of the retinal pigment epithelium (RPE). Interphotoreceptor retinoid-binding protein (IRBP) is present in the extracellular space between photoreceptors and the RPE. IRBP is known to bind visual retinoids. Previous studies on irbp(-/-) mice suggested that IRBP plays an insignificant role in opsin-pigment regeneration. However, the mice in these studies were uncontrolled for a severe mutation in the rpe65 gene. Rpe65 catalyzes the rate-limiting step in the visual cycle. Here, we examined the phenotype in irbp(-/-) mice homozygous for the wild-type (Leu450) rpe65 gene. We show that lack of IRBP causes delayed transfer of newly synthesized chromophore from RPE to photoreceptors. Removal of bleached chromophore from photoreceptors is also delayed in irbp(-/-) retinas after light exposure. It was previously shown that rods degenerate in irbp(-/-) mice. Here, we show that cones and rods degenerate at similar rates. However, cones are more affected functionally and show greater reductions in outer segment length than rods in irbp(-/-) mice. The disproportionate reductions in cone function and outer-segment length appear to result from mistrafficking of cone opsins due to impaired delivery of retinaldehyde chromophore, which functions as a chaperone for cone opsins but not rhodopsin.


Assuntos
Proteínas do Olho/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Retinoides/metabolismo , Proteínas de Ligação ao Retinol/fisiologia , Animais , Linhagem Celular , Proteínas do Olho/ultraestrutura , Humanos , Camundongos , Camundongos Knockout , Estimulação Luminosa/métodos , Transporte Proteico/fisiologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Proteínas de Ligação ao Retinol/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa