Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Opt Express ; 28(25): 37600, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379592

RESUMO

We provide a corrected figure of our previous publication [Opt. Express25, 18017 (2017)10.1364/OE.25.018017].

2.
Opt Lett ; 45(6): 1563-1566, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32164017

RESUMO

We report the experimental study of spectral modulations induced by a stimulated Raman scattering process in an all-fiber all-normal dispersion oscillator. With the use of dispersive Fourier transform, we recorded a series of single-shot spectra of consecutive laser pulses. The data indicate that the Raman process destabilizes the long-wavelength part of the laser pulse spectrum without disrupting the single-pulse generation regime. Our experiments revealed also that the oscillator displayed bistable operation for high pump powers. Two stable dissipative soliton mode-locked states were observed, together with output power hysteresis.

3.
Phys Chem Chem Phys ; 22(30): 17117-17128, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32687131

RESUMO

We performed time-resolved transient absorption and fluorescence anisotropy measurements in order to study tautomerization of porphycene in rigid polymer matrices at cryogenic temperatures. Studies were carried out in poly(methyl methacrylate) (PMMA), poly(vinyl butyral) (PVB), and poly(vinyl alcohol) (PVA). The results prove that in all studied media hydrogen tunnelling plays a significant role in the double hydrogen transfer which becomes very sensitive to properties of the environment below approx. 150 K. We also demonstrate that there exist two populations of porphycene molecules in rigid media: "hydrogen-transferring" molecules, in which tautomerization occurs on time scales below 1 ns and "frozen" molecules in which double hydrogen transfer is too slow to be monitored with nanosecond techniques. The number of "frozen" molecules increases when the sample is cooled. We explain this effect by interactions of guest molecules with a rigid host matrix which disturbs symmetry of porphycene and hinders tunnelling. Temperature dependence of the number of hydrogen-transferring molecules suggests that the factor which restores the symmetry of the double-minimum potential well in porphycene are intermolecular vibrations localized in separated regions of the amorphous polymer.

4.
Opt Express ; 27(8): 11018-11028, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052953

RESUMO

Herewith, we describe how intensity and phase of the ultrashort pulse retrieved with second-harmonic frequency-resolved optical gating (SHG FROG) can be utilized for measurement of the nonlinear refractive index (n 2). Through comparison with available literature, we show that our method surpasses Z-scan in terms of precision by a factor of two, and thus, constitutes an interesting alternative. We present results for various materials: fused silica, calcite, YVO 4, BiBO, CaF 2, and YAG at 1030 nm. Unlike the Z-scan, the use of this method is not restricted to free-space geometry, but due to its characteristics, it can be used in integrated waveguides or photonic crystal fibers as well.

5.
Phys Chem Chem Phys ; 21(31): 16895-16904, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31215570

RESUMO

We have proposed and constructed a setup for a novel method of ultrafast vibrational spectroscopy: femtosecond infrared pump-stimulated Raman probe spectroscopy. This is the first time-resolved spectroscopy providing simultaneously a sub-100 fs time resolution, a spectral resolution better than 10 cm-1 and a spectral window covering an extremely broad range of molecular vibrations (at least: 200-4000 cm-1) with a "single laser shot". The new method was applied to study vibrational relaxation pathways in the liquid HDO/D2O system. We determined the lifetimes of OH stretching vibrations to be in the range 310-500 fs depending on the isotopic dilution, which is in good agreement with the results from pump-probe femtosecond infrared spectroscopy. Moreover, we observed a strong coupling of OH stretch to OD stretch vibrations and possibly also to the librational modes of water.

6.
Opt Express ; 26(10): 13590-13604, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801382

RESUMO

We examine properties of an ultrashort laser pulse propagating through an artificial Saturable Absorber based on Nonlinear Polarization Evolution device which has been realized with Polarization Maintaining fibers only (PM NPE). We study and compare in-line and Faraday Mirror geometries showing that the latter is immune to errors in the PM NPE construction. Experimental results for the transmission measurements of the PM NPE setup for different input linear polarization angles and various input pulse powers are presented. We show that PM NPE topology is of crucial importance for controlling the properties of the output pulse as it rules the contribution of cross-phase modulation to an overall nonlinear phase change. We also demonstrate an excellent agreement between the numerical model and experimental results.

7.
Nano Lett ; 17(4): 2652-2659, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28262023

RESUMO

Nanowires hold great promise as tools for probing and interacting with various molecular and biological systems. Their unique geometrical properties (typically <100 nm in diameter and a few micrometers in length) enable minimally invasive interactions with living cells, so that electrical signals or forces can be monitored. All such experiments require in situ high-resolution imaging to provide context. While there is a clear need to extend visualization capabilities to the nanoscale, no suitable super-resolution far-field photoluminescence microscopy of extended semiconductor emitters has been described. Here, we report that ground state depletion (GSD) nanoscopy resolves heterostructured semiconductor nanowires formed by alternating GaP/GaInP segments ("barcodes") at a 5-fold resolution enhancement over confocal imaging. We quantify the resolution and contrast dependence on the dimensions of GaInP photoluminescence segments and illustrate the effects by imaging different nanowire barcode geometries. The far-red excitation wavelength (∼700 nm) and low excitation power (∼3 mW) make GSD nanoscopy attractive for imaging semiconductor structures in biological applications.

8.
Opt Express ; 25(15): 18017-18023, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789289

RESUMO

We report the implementation of a self-referenced optical frequency comb generated by a passively mode-locked all polarization maintaining (PM) Yb fiber laser based on a nonlinear amplifying loop mirror (NALM). After spectral broadening the optical spectrum spans from 650 nm to 1400 nm, allowing for the generation of an optical octave and carrier envelope offset frequency (fceo) stabilization through a conventional f-2f interferometer. We demonstrate for the first time the stabilization of the fceo of such a PM Yb system with an in-loop fractional frequency stability scaled to an optical frequency of low 10-19 at 1 second averaging time, offering a great potential for applications in optical atomic clock metrology.

9.
Opt Lett ; 42(3): 575-578, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146531

RESUMO

We demonstrate an all-fiber ultrafast ytterbium laser oscillator mode-locked by means of a nonlinear polarization evolution (NPE) method realized in polarization-maintaining (PM) fibers. A sequence of the PM fiber pieces is shown to perform NPE action while maintaining a required temporal overlap of the ordinary and extraordinary pulses propagating through it. We present details of simple numerical simulations showing the advantage of the proposed scheme of segmented PM fibers. The laser utilizing the above mentioned design which generates ultrashort pulses at a 20.54 MHz repetition rate with the dechirped pulse duration around 150 fs and a pulse energy of 0.85 nJ is also presented.

10.
Phys Chem Chem Phys ; 19(8): 6274-6285, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28195278

RESUMO

The effect of multiple light excitation events on bimolecular photo-induced electron transfer reactions in liquid solution is studied experimentally. It is found that the decay of fluorescence can be up to 25% faster if a second photon is absorbed after a first cycle of quenching and recombination. A theoretical model is presented which ascribes this effect to the enrichment of the concentration of quenchers in the immediate vicinity of fluorophores that have been previously excited. Despite its simplicity, the model delivers a qualitative agreement with the observed experimental trends. The original theory by Burshtein and Igoshin (J. Chem. Phys., 2000, 112, 10930-10940) was created for continuous light excitation though. A qualitative extrapolation from the here presented pulse experiments to the continuous excitation conditions lead us to conclude that in the latter the order of magnitude of the increase of the quenching efficiency upon increasing the light intensity of excitation, must also be on the order of tens of percent. These results mean that the rate constant for photo-induced bimolecular reactions depends not only on the usual known factors, such as temperature, viscosity and other properties of the medium, but also on the intensity of the excitation light.

11.
J Chem Phys ; 146(24): 244505, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668044

RESUMO

The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability limits found for the model in this work.

12.
Opt Lett ; 41(11): 2394-7, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244372

RESUMO

In this Letter, we demonstrate a 360 fold spectral bandwidth reduction of femtosecond laser pulses using the method of sum frequency generation of pulses with opposite chirps. The reduction has been achieved in a compact setup in which a single chirped volume Bragg grating replaces conventional stretcher and compressor units. Starting with 180 fs pulses, we have obtained, with a 30% overall efficiency, pulses longer than 100 ps with the spectral bandwidth of 0.23 cm-1 (7 GHz). We also discuss our method on theoretical grounds.

13.
Phys Chem Chem Phys ; 18(27): 18460-9, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27339434

RESUMO

The properties of binary mixtures of dimethylsulfoxide and glycerol, measured using several techniques, are reported. Special attention is given to those properties contributing or affecting chemical reactions. In this respect the investigated mixture behaves as a relatively simple solvent and it is especially well suited for studies on the influence of viscosity on chemical reactivity. This is due to the relative invariance of the dielectric properties of the mixture. However, special caution must be taken with specific solvation, as the hydrogen-bonding properties of the solvent change with the molar fraction of glycerol.

14.
Opt Lett ; 40(15): 3500-3, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258342

RESUMO

In this Letter, we present a figure-eight all-PM-fiber laser oscillator design with a nonlinear optical loop mirror as an artificial saturable absorber. Unlike previous constructions using the same mode-locking technique, our cavity is constructed entirely of polarization-maintaining (PM) fibers, making the oscillator more resistant to thermal and mechanical perturbations. Two simple and robust laser configurations that differ by the output coupling ratio (70% or 30%) are presented. The first configuration delivers high energy pulses of 3.5 nJ, and the second configuration delivers pulses of 1.6 nJ at a common repetition rate of 15 MHz. In either configuration, the pulsed operation is stable, and the laser operates in a single pulse train regime, even for pump powers approaching twice the power required for mode-locking. We have also observed that, at higher intracavity powers, stimulated Raman scattering plays a significant role.

15.
Chemistry ; 21(3): 1312-27, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25413950

RESUMO

Differently substituted anils (Schiff bases) and their boranil counterparts lacking the proton-transfer functionality have been studied using stationary and femtosecond time-resolved absorption, fluorescence, and IR techniques, combined with quantum mechanical modelling. Dual fluorescence observed in anils was attributed to excited state intramolecular proton transfer. The rate of this process varies upon changing solvent polarity. In the nitro-substituted anil, proton translocation is accompanied by intramolecular electron transfer coupled with twisting of the nitrophenyl group. The same type of structure is responsible for the emission of the corresponding boranil. A general model was proposed to explain different photophysical responses to different substitution patterns in anils and boranils. It is based on the analysis of changes in the lengths of CN and CC bonds linking the phenyl moieties. The model allows predicting the contributions of different channels that involve torsional dynamics to excited state depopulation.


Assuntos
Compostos de Anilina/química , Boro/química , Cinética , Prótons , Bases de Schiff/química , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Temperatura
16.
Opt Express ; 22(7): 8624-32, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718233

RESUMO

We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate (PPKTP) waveguide. We have used the recently demonstrated technique of controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good overlap of photon modes within the pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.

17.
Opt Express ; 22(15): 18824-32, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089500

RESUMO

Supercontinuum spanning over an octave from 900 - 2300 nm is reported in an all-normal dispersion, soft glass photonic crystal fiber. The all-solid microstructured fiber was engineered to achieve a normal dispersion profile flattened to within -50 to -30 ps/nm/km in the wavelength range of 1100 - 2700 nm. Under pumping with 75 fs pulses centered at 1550 nm, the recorded spectral flatness is 7 dB in the 930 - 2170 nm range, and significantly less if cladding modes present in the uncoated photonic crystal fiber are removed. To the best of our knowledge, this is the first report of an octave-spanning, all-normal dispersion supercontinuum generation in a non-silica microstructured fiber, where the spectrum long-wavelength edge is red-shifted to as far as 2300 nm. This is also an important step in moving the concept of ultrafast coherent supercontinuum generation in all-normal dispersion fibers further towards the mid-infrared spectral region.

18.
Opt Lett ; 38(22): 4581-4, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322079

RESUMO

We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

19.
Opt Express ; 20(3): 2136-42, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330454

RESUMO

We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615-985 nm) narrow bandwidth (≈10 cm(-1)) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification--without spectral filtering--of highly chirped white light by a narrow bandwidth (<5 cm(-1)) 515 nm pump pulse. The system, when pumped with just 200 µJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 µJ and an excellent beam quality in the entire tuning range.


Assuntos
Amplificadores Eletrônicos , Compressão de Dados/métodos , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Opt Lett ; 37(5): 878-80, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378424

RESUMO

We report generation of near-infrared photon pairs in fundamental spatial modes via type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO(4)) nonlinear waveguide supporting multiple transverse modes. This demonstrates experimentally a versatile scheme for controlling the spatial characteristics of the produced nonclassical light based on exploitation of intermodal dispersion. The down-converted photons are characterized by the measurement of the beam quality factors in the heralded regime.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa