Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612915

RESUMO

In pigs, iron deficiency anemia (IDA) is a common disorder that occurs during the early postnatal period, leading to the stunted growth and increased mortality of piglets. The main cause of IDA is low iron stores in the liver of newborn piglets; these stores constitute the main source of iron needed to satisfy the erythropoietic requirements of the piglets in their first weeks of life. Insufficient iron stores in piglets are usually due to the inadequate placental iron transfer from the sow to the fetuses. Therefore, iron supplementation in pregnant sows has been implemented to enhance placental iron transfer and increase iron accumulation in the liver of the fetuses. Over the years, several oral and parenteral approaches have been attempted to supplement sows with various iron preparations, and consequently, to improve piglets' red blood cell indices. However, there is debate with regard to the effectiveness of iron supplementation in pregnant sows for preventing IDA in newborn piglets. Importantly, this procedure should be carried out with caution to avoid iron over-supplementation, which can lead to iron toxicity. This article aims to critically review and evaluate the use of iron supplementation in pregnant sows as a procedure for preventing IDA in piglets.


Assuntos
Anemia Ferropriva , Feminino , Gravidez , Animais , Suínos , Anemia Ferropriva/prevenção & controle , Anemia Ferropriva/veterinária , Ferro , Placenta , Fígado , Suplementos Nutricionais
2.
FASEB J ; 36(8): e22451, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838947

RESUMO

CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and ß, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .


Assuntos
Colecalciferol , PPAR gama , Receptores de Calcitriol , Ativação Metabólica , Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Colecalciferol/farmacocinética , Humanos , Receptores X do Fígado/metabolismo , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Calcitriol/metabolismo
3.
Chemphyschem ; 23(2): e202100741, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34783442

RESUMO

Two new square planar ONNO nickel(II) complexes C2_core and C3_core have been synthesized and characterized by single crystal X-ray diffraction, NMR spectroscopy, thermogravimetry, and DFT calculations. The experimental results revealed the effect of the length of diamine bridge in the ligand on the behavior of the studied complexes in the reaction with N-heterocyclic aromatic amines, while DFT calculations provided a basis for the rationalization of this observation. The complex with propylenediamine bridge (C3_core) readily reacts with pyridine and its derivatives to form high-spin (paramagnetic) complexes with octahedral geometry as characterized by X-ray diffraction; electron-donating substituents on the pyridine ring facilitate the coordination of axial ligands. In contrast, the complex with ethylenediamine bridge (C2_core) does not undergo such a reaction because of the high deformation energy of the core required for the formation of C2_Py complex.

4.
Bioorg Chem ; 118: 105416, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798456

RESUMO

A new series of highly biologically active (20S,22R)-1α,25-dihydroxy-22-methyl-2-methylene-vitamin D3 analogs, possessing different side chains, have been efficiently prepared as potential agents for medical therapy. Design of these synthetic targets was based on the analysis of the literature data and molecular docking experiments. The synthetic strategy involved Sonogashira coupling of the known A-ring dienyne with the C,D-ring enol triflates, obtained from the corresponding Grundmann ketones. All synthesized vitamin D compounds were characterized by high in vitro potency and, moreover, they proved to be very calcemic in vivo exerting high activity on bone with particularly elevated intestinal calcium transport.


Assuntos
Calcitriol/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular , Receptores de Calcitriol/agonistas , Animais , Calcitriol/síntese química , Calcitriol/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HL-60 , Humanos , Estrutura Molecular , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Chem ; 121: 105660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168121

RESUMO

New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Vitaminas , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Humanos , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares , Vitamina D/metabolismo
6.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409233

RESUMO

Rotamers are stereoisomers produced by rotation (twisting) about σ bonds and are often rapidly interconverting at room temperature. Xylitol-massively produced sweetener-(2R,3r,4S)-pentane-1,2,3,4,5-pentol) forms rotamers from the linear conformer by rotation of a xylitol fragment around the C2-C3 bond (rotamer 1) or the C3-C4 bond (rotamer 2). The rotamers form two distinguishable structures. Small differences in geometry of rotamers of the main carbon chain were confirmed by theoretical calculations; however, they were beyond the capabilities of the X-ray powder diffraction technique due to the almost identical unit cell parameters. In the case of rotamers of similar compounds, the rotations occurred mostly within hydroxyl groups likewise rotations in L-arabitol and D-arabitol, which are discussed in this work. Our results, supported by theoretical calculations, showed that energetic differences are slightly higher for rotamers with rotations within hydroxyl groups instead of a carbon chain.


Assuntos
Álcoois Açúcares , Xilitol , Carbono , Estereoisomerismo , Álcoois Açúcares/química , Xilitol/química
7.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
8.
Am J Hematol ; 96(6): 659-670, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684239

RESUMO

The demand for iron is high in pregnancy to meet the increased requirements for erythropoiesis. Even pregnant females with initially iron-replete stores develop iron-deficiency anemia, due to inadequate iron absorption. In anemic females, the maternal iron supply is dedicated to maintaining iron metabolism in the fetus and placenta. Here, using a mouse model of iron deficiency in pregnancy, we show that iron recycled from senescent erythrocytes becomes a predominant source of this microelement that can be transferred to the placenta in females with depleted iron stores. Ferroportin is a key protein in the molecular machinery of cellular iron egress. We demonstrate that under iron deficiency in pregnancy, levels of ferroportin are greatly reduced in the duodenum, placenta and fetal liver, but not in maternal liver macrophages and in the spleen. Although low expression of both maternal and fetal hepcidin predicted ferroportin up-regulation in examined locations, its final expression level was very likely correlated with tissue iron status. Our results argue that iron released into the circulation of anemic females is taken up by the placenta, as evidenced by high expression of iron importers on syncytiotrophoblasts. Then, a substantial decrease in levels of ferroportin on the basolateral side of syncytiotrophoblasts, may be responsible for the reduced transfer of iron to the fetus. As attested by the lowest decrease in iron content among analyzed tissues, some part is retained in the placenta. These findings confirm the key role played by ferroportin in tuning iron turnover in iron-deficient pregnant mouse females and their fetuses.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Fígado/metabolismo , Complicações na Gravidez/metabolismo , Baço/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citocinas/sangue , Duodeno/metabolismo , Envelhecimento Eritrocítico , Índices de Eritrócitos , Feminino , Feto/metabolismo , Hemoglobinas/metabolismo , Hepcidinas/biossíntese , Hepcidinas/genética , Ferro/metabolismo , Fígado/embriologia , Macrófagos/metabolismo , Troca Materno-Fetal , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Proteínas Musculares/sangue , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fagocitose , Placenta/metabolismo , Gravidez , Regulação para Cima
9.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576090

RESUMO

Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais , Compostos Férricos/administração & dosagem , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Administração Oral , Anemia Ferropriva/sangue , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Duodeno/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/uso terapêutico , Hepcidinas/sangue , Hepcidinas/genética , Masculino , Microbiota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
10.
Bioorg Chem ; 100: 103883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361296

RESUMO

Hormonally active vitamin D3 metabolite, calcitriol, plays an important role in calcium-phosphate homeostasis, immune system actions and cell differentiation. Although anticancer activity of calcitriol is well documented and thousands of its analogs have been synthesized, none has been approved as a potential drug against cancer. Therefore, we attempted to introduce the cytotoxic effect to the calcitriol molecule by its linking to cisplatin. Herein, we present the synthesis of vitamin D compounds, designed on the basis of molecular modeling and docking experiments to the vitamin D receptor, and characterized by the presence of significantly different two side chains attached to C-20. In this study, a new synthetic approach to Gemini analogs was developed. Preparation of the target 19-norcalcitriol compounds involved separate syntheses of several building blocks (the A-ring, C/D-rings and side-chain fragments). The convergent synthetic strategy was used to combine these components by the different coupling processes, the crucial one being Wittig-Horner reaction of the Grundmann ketone analog with the known 2-methylene A-ring phosphine oxide. Due to the nature of the constructed steroidal side chains (bidentate ligands), which allowed coordination of metal ions, the first conjugate-type platinum(II) complexes of the vitamin D analogs were also successfully prepared and characterized. The target vitamin D compounds, displaying significant affinity for a vitamin D receptor, were assessed in vitro for their anti-proliferative activities towards several cell lines.


Assuntos
Antineoplásicos/química , Calcitriol/análogos & derivados , Compostos Organoplatínicos/química , Vitaminas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Calcitriol/síntese química , Calcitriol/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Receptores de Calcitriol/metabolismo , Vitaminas/síntese química , Vitaminas/farmacologia
11.
Bioorg Chem ; 101: 104013, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629275

RESUMO

Continuing our studies aimed at A-ring modified vitamin D compounds, we designed novel 19-norcalcitriol derivatives bearing at C-2 pegylated chains of different lengths. The terminal fragments of these substituents contain hydroxyls or moieties possessing nitrogen and/or sulfur atoms capable of transition metal ions complexation. Also, two conjugate-type platinum(II) complexes of 19-norcalcitriol were obtained in which l-methionine served as chelating moiety. The convergent synthesis of the target 19-norcalcitriol analogs involved several steps with the crucial one being condensation of A-ring phosphine oxide and the known Grundmann ketone by Wittig-Horner reaction. Further elaboration of the 2-alkylidene substituent provided all final compounds which were then tested to determine their affinity for the vitamin D receptor and cytotoxic activity.


Assuntos
Calcitriol/química , Calcitriol/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Sítios de Ligação , Calcitriol/síntese química , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Receptores de Calcitriol/efeitos dos fármacos
12.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
13.
Circ Res ; 121(5): 564-574, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28684630

RESUMO

RATIONALE: Clinical studies have shown that Sirt3 (Sirtuin 3) expression declines by 40% by 65 years of age paralleling the increased incidence of hypertension and metabolic conditions further inactivate Sirt3 because of increased NADH (nicotinamide adenine dinucleotide, reduced form) and acetyl-CoA levels. Sirt3 impairment reduces the activity of a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) because of hyperacetylation. OBJECTIVE: In this study, we examined whether the loss of Sirt3 activity increases vascular oxidative stress because of SOD2 hyperacetylation and promotes endothelial dysfunction and hypertension. METHODS AND RESULTS: Hypertension was markedly increased in Sirt3-knockout (Sirt3-/-) and SOD2-depleted (SOD2+/-) mice in response to low dose of angiotensin II (0.3 mg/kg per day) compared with wild-type C57Bl/6J mice. Sirt3 depletion increased SOD2 acetylation, elevated mitochondrial O2· -, and diminished endothelial nitric oxide. Angiotensin II-induced hypertension was associated with Sirt3 S-glutathionylation, acetylation of vascular SOD2, and reduced SOD2 activity. Scavenging of mitochondrial H2O2 in mCAT mice expressing mitochondria-targeted catalase prevented Sirt3 and SOD2 impairment and attenuated hypertension. Treatment of mice after onset of hypertension with a mitochondria-targeted H2O2 scavenger, mitochondria-targeted hydrogen peroxide scavenger ebselen, reduced Sirt3 S-glutathionylation, diminished SOD2 acetylation, and reduced blood pressure in wild-type but not in Sirt3-/- mice, whereas an SOD2 mimetic, (2-[2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino]-2-oxoethyl) triphenylphosphonium (mitoTEMPO), reduced blood pressure and improved vasorelaxation both in Sirt3-/- and wild-type mice. SOD2 acetylation had an inverse correlation with SOD2 activity and a direct correlation with the severity of hypertension. Analysis of human subjects with essential hypertension showed 2.6-fold increase in SOD2 acetylation and 1.4-fold decrease in Sirt3 levels, whereas SOD2 expression was not affected. CONCLUSIONS: Our data suggest that diminished Sirt3 expression and redox inactivation of Sirt3 lead to SOD2 inactivation and contributes to the pathogenesis of hypertension.


Assuntos
Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Acetilação , Animais , Células Cultivadas , Humanos , Hipertensão/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sirtuína 3/genética , Superóxido Dismutase/genética
14.
PLoS Med ; 15(2): e1002505, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462168

RESUMO

BACKGROUND: Pediatric Phase I cancer trials are critical for establishing the safety and dosing of anti-cancer treatments in children. Their implementation, however, must contend with the rarity of many pediatric cancers and limits on allowable risk in minors. The aim of this study is to describe the risk and benefit for pediatric cancer Phase I trials. METHODS AND FINDINGS: Our protocol was prospectively registered in PROSPERO (CRD42015015961). We systematically searched Embase and PubMed for solid and hematological malignancy Phase I pediatric trials published between 1 January 2004 and 1 March 2015. We included pediatric cancer Phase I studies, defined as "small sample size, non­randomized, dose escalation studies that defined the recommended dose for subsequent study of a new drug in each schedule tested." We measured risk using grade 3, 4, and 5 (fatal) drug-related adverse events (AEs) and benefit using objective response rates. When possible, data were meta-analyzed. We identified 170 studies meeting our eligibility criteria, accounting for 4,604 patients. The pooled overall objective response rate was 10.29% (95% CI 8.33% to 12.25%), and was lower in solid tumors, 3.17% (95% CI 2.62% to 3.72%), compared with hematological malignancies, 27.90% (95% CI 20.53% to 35.27%); p < 0.001. The overall fatal (grade 5) AE rate was 2.09% (95% CI 1.45% to 2.72%). Across the 4,604 evaluated patients, there were 4,675 grade 3 and 4 drug-related AEs, with an average grade 3/4 AE rate per person equal to 1.32. Our study had the following limitations: trials included in our review were heterogeneous (to minimize heterogeneity, we separated types of therapy and cancer types), and we relied on published data only and encountered challenges with the quality of reporting. CONCLUSIONS: Our meta-analysis suggests that, on the whole, AE and response rates in pediatric Phase I trials are similar to those in adult Phase I trials. Our findings provide an empirical basis for the refinement and review of pediatric Phase I trials, and for communication about their risk and benefit.


Assuntos
Biomarcadores/análise , Ensaios Clínicos Fase I como Assunto/métodos , Oncologia/métodos , Pediatria/métodos , Criança , Humanos , Fatores de Risco
15.
Eur Respir J ; 52(1)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30002103

RESUMO

Our objective was to summarise systematically all research evidence related to how patients value outcomes in chronic obstructive pulmonary disease (COPD).We conducted a systematic review (systematic review registration number CRD42015015206) by searching PubMed, Embase, PsycInfo and CINAHL, and included reports that assessed the relative importance of outcomes from COPD patients' perspective. Two authors independently determined the eligibility of studies, abstracted the eligible studies and assessed risk of bias. We narratively summarised eligible studies, meta-analysed utilities for individual outcomes and assessed the certainty of evidence using the Grading of Recommendations, Assessment, Development and Evaluations approach.We included 217 quantitative studies. Investigators most commonly used utility measurements of outcomes (n=136), discrete choice exercises (n=13), probability trade-off (n=4) and forced choice techniques (n=46). Patients rated adverse events as important but on average, less so than symptom relief. Exacerbation and hospitalisation due to exacerbation are the outcomes that COPD patients rate as most important. This systematic review provides a comprehensive registry of related studies.


Assuntos
Tomada de Decisão Clínica , Avaliação de Resultados da Assistência ao Paciente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Progressão da Doença , Humanos , Preferência do Paciente , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Haematologica ; 103(9): 1493-1501, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29773592

RESUMO

Current therapies for childhood T-cell acute lymphoblastic leukemia have increased survival rates to above 85% in developed countries. Unfortunately, some patients fail to respond to therapy and many suffer from serious side effects, highlighting the need to investigate other agents to treat this disease. Parthenolide, a nuclear factor kappa (κ)B inhibitor and reactive oxygen species inducer, has been shown to have excellent anti-cancer activity in pediatric leukemia xenografts, with minimal effects on normal hemopoietic cells. However, some leukemia initiating cell populations remain resistant to parthenolide. This study examined mechanisms for this resistance, including protective effects conferred by bone marrow stromal components. T-cell acute leukemia cells co-cultured with mesenchymal stem cells demonstrated significantly enhanced survival against parthenolide (73±11%) compared to cells treated without mesenchymal stem cell support (11±9%). Direct cell contact between mesenchymal cells and leukemia cells was not required to afford protection from parthenolide. Mesenchymal stem cells released thiols and protected leukemia cells from reactive oxygen species stress, which is associated with parthenolide cytotoxicity. Blocking cystine uptake by mesenchymal stem cells, using a small molecule inhibitor, prevented thiol release and significantly reduced leukemia cell resistance to parthenolide. These data indicate it may be possible to achieve greater toxicity to childhood T-cell acute lymphoblastic leukemia by combining parthenolide with inhibitors of cystine uptake.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Adolescente , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/uso terapêutico
17.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1410-1421, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28219768

RESUMO

Mosaic mutant mice displaying functional dysfunction of Atp7a copper transporter (the Menkes ATPase) are an established animal model of Menkes disease and constitute a convenient tool for investigating connections between copper and iron metabolisms. This model allows to explore changes in iron metabolism in suckling mutant mice suffering from systemic copper deficiency as well as in young and adult ones undergone copper therapy, which reduces lethal effect of the Atp7a gene mutation. Our recent study demonstrated that 14-day-old mosaic mutant males display blood cell abnormalities associated with intravascular hemolysis, and show disturbances in the functioning of the hepcidin-ferroportin regulatory axis, which controls systemic iron homeostasis. We thus aimed to check whether copper supplementation recovers mutants from hemolytic insult and rebalance systemic iron regulation. Copper supplementation of 14-day-old mosaic mutants resulted in the reestablishment of hematological status, attenuation of hepicidin and concomitant induction of the iron exporter ferroportin/Slc40a1 expression in the liver, down-regulated in untreated mutants. Interestingly, treatment of wild-type males with copper, induced hepcidin-independent up-regulation of ferroportin protein level in hepatic macrophages in both young and adult (6-month-old) animals. Stimulatory effect of copper on ferroportin mRNA and protein levels was confirmed in bone marrow-derived macrophages isolated from both wild-type and mosaic mutant males. Our study indicates that copper is an important player in the regulation of the Slc40a1 gene expression.


Assuntos
Proteínas de Transporte de Cátions/biossíntese , Cobre/farmacologia , Regulação da Expressão Gênica , Hemólise , Mosaicismo , Animais , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hemólise/efeitos dos fármacos , Hemólise/genética , Masculino , Camundongos , Camundongos Knockout
18.
Int J Mol Sci ; 18(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039779

RESUMO

Continuing our structure-activity studies on the vitamin D analogs with the altered intercyclic seco-B-ring fragment, we designed compounds possessing dienyne system conjugated with the benzene D ring. Analysis of the literature data and the docking experiments seemed to indicate that the target compounds could mimic the ligands with a good affinity to the vitamin D receptor (VDR). Multi-step synthesis of the C/D-ring building block of the tetralone structure was achieved and its enol triflate was coupled with the known A-ring fragments, possessing conjugated enyne moiety, using Sonogashira protocol. The structures of the final products were confirmed by NMR, UV and mass spectroscopy. Their binding affinities for the full-length human VDR were determined and it was established that compound substituted at C-2 with exomethylene group showed significant binding to the receptor. This analog was also able to induce monocytic differentiation of HL-60 cells.


Assuntos
Vitamina D/química , Vitamina D/farmacologia , Técnicas de Química Sintética , Desenho de Fármacos , Células HL-60 , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Vitamina D/síntese química
19.
Org Biomol Chem ; 14(5): 1646-52, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26693597

RESUMO

The UV-induced photochemical reaction of 1α,25-dihydroxy-9-methylene-19-norvitamin D3 has been investigated. The pentacyclic structure of the isolated product has been unequivocally established by X-ray crystallographic analysis. The possible reaction paths of the examined photochemical transformation are discussed. Biological in vivo and in vitro tests proved that the photoproduct is devoid of calcemic activity.


Assuntos
Hidroxicolecalciferóis/química , Hidroxicolecalciferóis/efeitos da radiação , Esteróis/química , Esteróis/efeitos da radiação , Raios Ultravioleta , Cristalografia por Raios X , Células HL-60 , Humanos , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos , Esteróis/síntese química
20.
Postepy Hig Med Dosw (Online) ; 70(0): 709-21, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27356602

RESUMO

Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS) requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1) gene. Mutations in the SOD1 gene constitute one of the most common genetic causes of the inherited form of ALS. However, it should be considered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymatic activity, a condition which does not occur in human pathology and which may itself change the expression of iron metabolism genes.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Homeostase , Ferro/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Morte Celular , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Humanos , Ferro/fisiologia , Neurônios Motores/fisiologia , Mutação , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa